Monatshefte für Mathematik

, Volume 102, Issue 2, pp 91–102

On a conjecture of R. E. Miles about the convex hull of random points

  • Christian Buchta


Denoty bypd+i(Bd,d+m) the probability that the convex hull ofd+m points chosen independently and uniformly from ad-dimensional ballBd possessesd+i(i=1,...,m) vertices. We prove Mile's conjecture that, given any integerm, pd+m(Bd,d+m)»1 asd»∞. This is obvious form=1 and was shown by Kingman form=2 and by Miles form=3. Further, a related result by Miles is generalized, and several consequences are deduced.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions. New York: Dover. 1965.Google Scholar
  2. [2]
    Baddeley, A.: A fourth note on recent research in geometrical probability. Adv. Appl. Prob.9, 824–860 (1977).Google Scholar
  3. [3]
    Blaschke, W.: Lösung des “Vierpunktproblems” von Sylvester aus der Theorie der geometrischen Wahrscheinlichkeiten. Leipziger Berichte69, 436–453 (1917).Google Scholar
  4. [4]
    Blaschke, W.: Vorlesungen über Differentialgeometrie II. Affine Differentialgeometrie. Berlin: Springer. 1923.Google Scholar
  5. [5]
    Buchta, C.: Zufallspolygone in konvexen Vielecken. J. Reine Angew. Math.347, 212–220 (1984).Google Scholar
  6. [6]
    Buchta, C.: Über die konvexe Hülle von Zufallspunkten in Eibereichen. Elem. Math.38, 153–156 (1983).Google Scholar
  7. [7]
    Buchta, C.: Zufällige Polyeder-Eine Übersicht. In: Zahlentheoretischen Analysis (Hlawka, E., (ed.). Lect. Notes Math. 1114, 1–13. Berlin-Heidelberg-New York-Tokyo: Springer. 1985.Google Scholar
  8. [8]
    Buchta, C., Müller, J.: Random polytopes in a ball. J. Appl. Prob.21, 753–762 (1984).Google Scholar
  9. [9]
    Groemer, H.: On some mean values associated with a randomly selected simplex in a convex set. Pacific J. Math.45, 525–533 (1973).Google Scholar
  10. [10]
    Groemer, H.: On the average size of polytopes in a convex set. Geom. edicata13, 47–62 (1982).Google Scholar
  11. [11]
    Henze, N.: random triangles in convex regions. J. Appl. Prob.20, 111–125 (1983).Google Scholar
  12. [12]
    Hostinský, B.: Sur les probabilités géométriques. Brno: Publ. Fac. Sci. Univ. Masaryk. 1925.Google Scholar
  13. [13]
    Kendall, M. G., Moran, P. A. P.: Geometrical Probability. London: Giffin. 1963.Google Scholar
  14. [14]
    Kingman, J. F. C.: Random secants of a convex body. J. Appl. Prob.6, 660–672 (1969).Google Scholar
  15. [15]
    Klee, V.: What is the expected volume of a simplex whose vertices are chosen at random from a given convex body? Amer. Math. Monthly76, 286–288 (1969).Google Scholar
  16. [16]
    Little, D. V.: A third note on recent research in geometrical probability. Adv. Appl. Prob.6, 103–130 (1974).Google Scholar
  17. [17]
    Miles, R. E.: Isotropic random simplices. Adv. Appl. Prob.3, 353–382 (1971).Google Scholar
  18. [18]
    Moran, P. A. P.: A note on recent research in geometrical pobability. J. Appl. Prob.3, 453–463 (1966).Google Scholar
  19. [19]
    Moran, P. A. P.: A second note on recent research in geometrical probability. Adv. Appl. Prob.1, 73–89 (1969).Google Scholar
  20. [20]
    Reed, W. J.: Random points in a simplex. Pacific J. Math.54, 183–198 (1974).Google Scholar
  21. [21]
    Santaló, L. A.: Integral Geometry and Geometric Probability. Reading: Addison-Wesley. 1976.Google Scholar
  22. [22]
    Schöpf, P.: Gewichtete Volumsmittelwerte von Simplices, welche zufälling in einem konvexen Körper des ℝn gewählt werden. Mh. Math.83, 331–337 (1977).Google Scholar
  23. [23]
    Solomon, H.: Geometric Probability. Philadelphia: SIAM. 1978.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Christian Buchta
    • 1
  1. 1.Mathematisches Institut der UniversitätFreiburg im BreisgauGermany
  2. 2.Institut für AnalysisTechnische Universität WienWienAustria

Personalised recommendations