Inflammation

, Volume 20, Issue 2, pp 123–137 | Cite as

Changes of fatty acid composition and oxidative metabolism of human neutrophils migrating into an inflammatory exudate

  • A. Carletto
  • P. Bellavite
  • P. Guarini
  • D. Biasi
  • S. Chirumbolo
  • P. Caramaschi
  • L. M. Bambara
  • R. Corrocher
Original Articles

Abstract

The peripheral blood neutrophils and the neutrophils accumulated into a skin-window experimental exudate were compared for their ability to release superoxide anion (O 2 ) and for their fatty acid composition, determined by capillary gaschromatography. The basal O 2 release and the phorbol myristate acetate (PMA)-induced O 2 release were not significantly different in the two neutrophil populations, while in response to formyl-methionyl-leucyl-phenylalanine (fMLP) the exudate cells showed an activity that was two fold higher than that of blood cells. The most significant changes of fatty acid composition of exudate versus blood cells were the following: i) increase of C16∶0 (palmitic acid) from 21.3±1.2% to 23.5±1.3% (+ 10.2%) of total fatty acids (p<0.001), ii) increase of C18:2 (linoleic acid) from 9.3±1.7% to 11.0±2.1% (+18.3%) (p=0.005), iii) decrease of C20∶4 (arachidonic acid) from 12.8±1.6% to 10.6±1.2% (−17.3%) (p<0.001), whereas C18∶1 (oleic acid) did not change. The total content of saturated or unsaturated fatty acids did not change. In exudate cells, a strong negative correlation was found between palmitic acid content and O 2 release in response to both fMLP and PMA (r=-0.52,p< 0.02 andr=−0.49,p<0.05, respectively) whereas arachidonic acid correlated positively, but weakly, with O 2 (r=0.40,p=0.07 andr=0.47,p=0.05, with fMLP and PMA as stimulants respectively). A positive correlation was also found between the arachidonic acid content of blood cells and the number of cells that migrated into the inflammatory exudate. These results indicate that the process of extravasation from blood into the exudate causes specific and consistent modifications of the fatty acid composition of neutrophils and suggest that these modifications have a role in the activation and the regulation of the O 2 forming system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McCall, C. E., D. A. Bass, L. R. Dechatelet, A. S. Link, Jr., andM. Mann. 1979. In vitro responses of human neutrophils to N-formyl-methionyl-leucyl-phenylalanine, correlation with effects of acute bacterial infection.J. Infect. Dis. 140:277–286.PubMedGoogle Scholar
  2. 2.
    Van Epps, D.E. andM. L. Garcia. 1980. Enhancement of neutrophil function as a result of prior exposure to chemotactic factor.J. Clin. Invest. 66:167–175.PubMedGoogle Scholar
  3. 3.
    Zimmerli, W., P. D. Lew, H. J. Cohen, andF. A. Waldvogel. 1984. Comparative superoxide-generating system of granulocytes from blood and peritoneal exudates.Infect. Immun. 46:625–630.PubMedGoogle Scholar
  4. 4.
    Berton, G., L. Zeni, M. A. Cassatella, andF. Rossi. 1986. Gamma interferon is able to enhance the oxidative metabolism of human neutrophils.Biochem. and Biophys. Res. Com. 138:1276–1282.Google Scholar
  5. 5.
    Briheim, G., O. Stendahl, B. I. Coble, andC. Dahlgren. 1988. Exudate polymorphonuclear leukocytes isolated from skin chambers are primed for enhanced response to subsequent stimulation with the chemoattractant fMet-Leu-Phe and C3 opsonized yeast particles.Inflammation 12:141–152.PubMedGoogle Scholar
  6. 6.
    Follin, P., M. P. Wymann, B. Dewald, M. Ceska, andC. Dahlgren. 1991. Human neutrophil migration into skin chambers is associated with production of NAP-1/IL8 and C5a.Eur. J. Haematol. 47:71–76.PubMedGoogle Scholar
  7. 7.
    H. L. Nurcombe, R. C. Bucknall, andS. W. Edwards. 1991. Neutrophils isolated from the synovial fluid of patients with rheumatoid arthritis, priming and activation in vivo.Ann. Rheum. Dis. 50:147–153.PubMedGoogle Scholar
  8. 8.
    Zimmerli, W., B. Seligmann, andJ. I. Gallin. 1986. Exudation primes human and guinea pig neutrophils for subsequent responsiveness to the chemotactic peptide N-formylmethionyl-leucylphenylalanine and increases complement component C3bi receptor expression.J. Clin. Invest. 77:925–933.PubMedGoogle Scholar
  9. 9.
    Tennenberg, S. D. andJ. S. Solomkin. 1990. Activation of neutrophils by cachectin/tumor necrosis factor, priming of n-formyl-methionyl-leucyl-phenylalanine-induced oxidative responsiveness via receptor mobilization without degranulation.J. Leukocyte Biol. 47:217–223.PubMedGoogle Scholar
  10. 10.
    Biasi, D., M. L. Bambara, A. Carletto, P. Caramaschi, M. C. Serra, P. Guzzo, C. Santonastaso, andP. Bellavite. 1993a. Molecular mechanisms of priming. Exudate human neutrophils are primed to fMet-Leu-Phe but have normal intracellular calcium and cAMP responses.Bull. Mol. Biol. Med. 18:225–235.Google Scholar
  11. 11.
    Axtell, R. A., R. R. Sandborg, J. E. Smolen, P. A. Ward, andL. A. Boxer. 1990. Exposure of human neutrophils to exogenous nucleotides causes elevation in intracellular calcium, transmembrane calcium fluxes, and an alteration of a cytosolic factor resulting in enhanced Superoxide production in response to FMLP and arachidonic acid.Blood 75:1324–1332.PubMedGoogle Scholar
  12. 12.
    Zimmerli, W., A. M. Reber, andC. A. Dahinden. 1990. The role of formylpeptide receptors, C5a receptors, and cytosolic-free calcium in neutrophil priming.J. Infect. Dis. 161:242–249.PubMedGoogle Scholar
  13. 13.
    Guthrie, L. A., L. C. McPhail, P. M. Henson, andR. B. Johnston. 1984. Priming of neuthrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme.J. Exp. Med. 160:1657–1671.Google Scholar
  14. 14.
    Paty, P. B., R. W. Graeff, S. J. Mates, andT. K. Hunt. 1990. Superoxide production by wound neutrophils. Evidence for increased activity of the NADPH oxidase.Arch. Surg. 125:65–69.PubMedGoogle Scholar
  15. 15.
    Cassatella, M. A., F. Bazzoni, R. M. Flynn, S. Dusi, G. Trinchieri, andF. Rossi. 1990. Molecular basis of interferon-g and lipopolysaccharide enhancement of phagocyte respiratory burst capability. Studies on the gene expression of several NADPH oxidase components.J. Biol. Chem. 265:20241–20246.PubMedGoogle Scholar
  16. 16.
    Gabig, T. G. andB. M. Babior. 1979. The O2 forming oxidase responsible for the respiratory burst in human neutrophils. Properties of the solubilized enzyme.J. Biol. Chem. 254:9070–9074.PubMedGoogle Scholar
  17. 17.
    Tamura, M., T. Tamura, S. R. Tyagi, andJ. D. Lambeth. 1988. The superoxide-generating respiratory burst oxidase of human neutrophil plasma membrane. Phosphatidylserine as an effector of the activated enzyme.J. Biol. Chem. 263:17621–17626.PubMedGoogle Scholar
  18. 18.
    Bellavite, P., F. Corso, S. Dusi, M. Grzeskowiak, V. Della Bianca, andF. Rossi. 1988. Activation of a NADPH-dependent Superoxide production in plasma-membrane extracts of pig neutrophils by phosphatidic acid.J. Biol. Chem. 263:8210–8214.PubMedGoogle Scholar
  19. 19.
    Agwu, D. E., L. McPhail, S. Sozzani, D. A. Bass, andC. E. McCall. 1991. Phosphatidic acid as a second messenger in human polymorphonuclear leukocytes. Effects on activation of NADPH oxidase.J. Biol. Chem. 88:531–539.Google Scholar
  20. 20.
    McPhail, L. C., D. Qualliotine-Mann, D. E. Agwu, andC. E. McCall. 1993. Phospho-lipases and the activation of the NADPH oxidase.Eur. J. Haematol. 51:294–300.PubMedGoogle Scholar
  21. 21.
    Bromberg, Y. andE. Pick. 1984. Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell-free system derived from macrophages.Cell. Immunol. 88:213–221.PubMedGoogle Scholar
  22. 22.
    McPhail, L. C., P. S. Shirley, C. C. Clayton, andR. Snyderman. 1985. Activation of the respiratory burst enzyme from human neutrophils in a cell-free system. Evidence for a soluble cofactor.J. Clin. Invest. 75:1735–1739.PubMedGoogle Scholar
  23. 23.
    Clark, R. A., K. G. Leidal, D. W. Pearson, andW. M. Nauseef. 1987. NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system.J. Biol. Chem. 262:4065–4074.PubMedGoogle Scholar
  24. 24.
    Biasi, D., L. M. Bambara, A. Carletto, M. Caraffi, M. C. Serra, S. Chirumbolo, andP. Bellavite. 1993b. Factor-specific changes of the oxidative metabolism of exudate human neutrophils.Inflammation 17:13–23.PubMedGoogle Scholar
  25. 25.
    Bellavite, P., A. Carletto, D. Biasi, P. Caramaschi, F. Poli, F. Suttora, andL. M. Bambara. 1994. Studies of skin-window exudate human neutrophils. Complex patterns of adherence to serum-coated surfaces in dependence on FMLP doses.Inflammation 18:575–587.PubMedGoogle Scholar
  26. 26.
    Bellavite, P., S. Chirumbolo, C. Mansoldo, G. Gandini, andP. Dri. 1992. A simultaneous assay for oxidative metabolism and adhesion of human neutrophils. Evidence for correlations and dissociations of the two responses.J. Leukocyte Biol. 51:329–335.PubMedGoogle Scholar
  27. 27.
    Metcalf, J. A., J. I. Gallin, W. M. Nauseef, andR. K. Root. 1986.In Laboratory Manual of Neutrophil Function. Raven Press, New York.Google Scholar
  28. 28.
    Bellavite, P., S. Chirumbolo, G. Lippi, P. Guzzo, andC. Santonastaso. 1993. Homologous priming in chemotactic peptide stimulated neutrophils.Cell Biochem. Function 11:93–100.Google Scholar
  29. 29.
    Girelli, D., M. Azzini, O. Olivieri, P. Guarini, M. T. Trevisan, A. Lupo, P. Bernich, G. Panzetta, andR. Corrocher. 1992. Red blood cells and platelet membrane fatty acids in non-dialyzed and dialyzed uremics.Clin. Chim. Acta 211:155–166.PubMedGoogle Scholar
  30. 30.
    Lepage, G. andC. C. Roy. 1986. Direct transesterification of all classes of lipids in a onestep reaction.J. Lipid Res. 27:114–120.PubMedGoogle Scholar
  31. 31.
    Dipersio, J. F., P. Billing, R. Williams, andJ. C. Gasson. 1988. Human granulocytemacrophage colony-stimulating factor and other cytokines prime human neutrophils for enhanced arachidonic acid release and leukotriene B4 synthesis.J. Immunol. 140:4315–4322.PubMedGoogle Scholar
  32. 32.
    Corey, S. J. andP. M. Rosoff. 1991. Unsaturated fatty acids and lipoxygenase products regulate phagocytic NADPH oxidase activity by a nondetergent mechanism.Journal of Laboratory and Clinical Medicine,118:343–351.PubMedGoogle Scholar
  33. 33.
    Bauldry, S. A., C. E. McCall, S. L. Cousart, andD. A. Bass. 1991. Tumor necrosis factor-a priming of phospholipase A2 activation in human neutrophils. An alternative mechanism of priming.J. Immunol. 146:1277–1285.PubMedGoogle Scholar
  34. 34.
    Darmani, H., J. Harwood, andS. K. Jackson. 1993. Interferon-g-stimulated uptake and turnover of linoleate and arachidonate in macrophages: A possible pathway for hypersensitivity to endotoxin.Cell. Immunol. 152:59–71.PubMedGoogle Scholar
  35. 35.
    McPhail, L. C., C. C. Clayton, andR. Snyderman. 1984. A potential second messenger role for unsaturated fatty acids, Activation of Ca2 +-dependent protein kinase C.Science 224:622–624.PubMedGoogle Scholar
  36. 36.
    Beaumier, L., N. Faucher, andP. H. Nacchache. 1987. Arachidonic acid-induced release of calcium in permeabilized human neutrophils.FEBS Lett. 221:289–292.PubMedGoogle Scholar
  37. 37.
    Abramson, S. B., J. Leszczynska-Piziak, andG. Weissmann. 1991. Arachidonic acid as a second messenger. Interactions with a GTP-binding protein of human neutrophils.J. Immunol. 147:231–236.PubMedGoogle Scholar
  38. 38.
    Rubinek, T. andR. Levy. 1993. Arachidonic acid increases the activity of the assembled NADPH oxidase in cytoplasmic membranes and endosomes.Biochim. Biophys. Acta 1176:51–58.PubMedGoogle Scholar
  39. 39.
    Henderson, L. M., S. K. Moule, andJ. B. Chappel. 1993. The immediate activator of the NADPH oxidase is arachidonate, not phosphorylation.Eur. J. Biochem. 211:157–162.PubMedGoogle Scholar
  40. 40.
    Maridonneau-Parini, I., S. M. Tringale, andA. I. Tauber. 1986. Identification of distinct activation pathways of the human neutrophil NADPH-oxidase.J. Immunol. 137:2925–2929.PubMedGoogle Scholar
  41. 41.
    Forehand, J. R., R. B. Johnston, Jr., andJ. S. Bomalaski. 1993. Phospholipase A2 activity in human neutrophils. Stimulation by lipopolysaccharide and possible involvement in priming for an enhanced respiratory burst.J. Immunol. 151:4918–4925.PubMedGoogle Scholar
  42. 42.
    Bellavite, P., P. Guarini, D. Biasi, A. Carletto, M. T. Trevisan, P. Caramaschi, L. M. Bambara, andR. Corrocher. 1995. Correlations between the intensity of fMLP-dependent respiratory burst and cellular fatty acid composition in human neutrophils.Br. J. Haematol. 89:271–276.PubMedGoogle Scholar
  43. 43.
    Alonso, F., P. M. Henson, andC. C. Leslie. 1986. A cytosolic phospholipase in human neutrophils that hydrolyzes arachidonoyl-containing phosphatidylcholine.Biochem. Biophys. Acta 878:273–280.PubMedGoogle Scholar
  44. 44.
    Ramesha, C. S. andD. L. Ives. 1993. Detection of arachidonoyl-selective phospholipase A2 in human neutrophil cytosol.Biochim. Biophys. Acta 1168:37–44.PubMedGoogle Scholar
  45. 45.
    Sandborg, R. R. andJ. E. Smolen. 1988. Biology of disease. Early biochemical events in leukocyte activation.Lab. Invest. 59:300–320.PubMedGoogle Scholar
  46. 46.
    Irvine, R. F. 1982. How is the level of free arachidonic acid controlled in mammalian cells?Biochem. J. 204:3–16.PubMedGoogle Scholar
  47. 47.
    Stubb, C. D. andA. D. Smith. 1984. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function.Biochim. Biophys. Acta 779:89–137.PubMedGoogle Scholar
  48. 48.
    Mori, T., Y. Taki, R. Minakuchi, B. Yu, andY. Nishizuka. 1980. Inhibitory action of chlorpromazine, dibucaine, and other phospholipid-interacting drugs on calcium-activated phospholipid-dependent protein kinase.J. Biol. Chem. 255:8378–8380.PubMedGoogle Scholar
  49. 49.
    Cathcart, E. S., C. A. Leslie, S. N. Meydani, andK. C. Hayes. 1987. A fish oil diet retards experimental amyloidosis, modulates lymphocyte function, and decreases macrophage arachidonate metabolism in mice.J. Immunol. 139:1850–1854.PubMedGoogle Scholar
  50. 50.
    Olivieri, O., M. Negri, M. De Gironcoli, A. Bassi, P. Guarini, A. M. Stanzial, M. L. Guadagnin, S. Ferrari, andR. Corrocher. 1988. Effects of dietary fish-oil on malondialdehide production and glutathion-peroxidase activity in hyperlipidemic patients.Scand. J. Clin. Lab. Invest. 48:659–665.PubMedGoogle Scholar
  51. 51.
    Fletcher, M. P., andV. A. Ziboh. 1990. Effects of dietary supplementation with eicosapentaenoic acid or gamma-linolenic acid on neutrophil phospholipid fatty acid composition and activation responses.Inflammation 14:585–697.PubMedGoogle Scholar
  52. 52.
    Jannace, P. W., R. H. Lerman, J. I. Santos, andJ. J. Vitale. 1992. Effects of oral soy phosphatidylcholine on phagocytosis, arachidonate concentrations, and killing by human polymorphonuclear leukocytes.Am. J. Clin. Nutr. 56:599–603.PubMedGoogle Scholar
  53. 53.
    Smith, D. M., J. A. Johnson, andR. A. Turner. 1989. Alterations in arachidonic acid metabolism and chemotactic response in polymorphonuclear leukocytes from patients with rheumatoid arthritis.Clin. Exp. Rheumatol. 7:471–477.PubMedGoogle Scholar
  54. 54.
    Suryaprabha, P., U. N. Das, G. Ramesh, K. Vijay Kumar, andG. Sravan Kumar. 1991. Reactive oxygen species, lipid peroxides and essential fatty acids in patients with rheumatoid arthritis and systemic lupus erythematosus.Prost. Leuk. Ess. Fatty Acids 43:251–255.Google Scholar
  55. 55.
    Kremer, J. M., J. Bigaunoette, A. V. Michalek, M. A. Timchalk, L. Leninger, R. I. Rynes, C. Huyck, J. Zieminski, andL. E. Bartholomew. 1985. Effects of manipulation of dietary fatty acids on clinical manifestations of rheumatoid arthritis.Lancet i: 184–187.Google Scholar
  56. 56.
    Tate, G. A., B. F. Mandell, R. A. Karmali, M. Laposata, D. G. Baker, H. R. Shumacher, andR. B. Zurier. 1988. Suppression of monosodium urate crystal-induced acute inflammation by diets enriched with gamma-linolenic acid and eicosapentaenoic acid.Arthritis Rheum. 31:1543–1551.PubMedGoogle Scholar
  57. 57.
    Belch, J. J. F., D. Ansell, R. Madhok, A. O'Dowd, andR. D. Sturrock. 1988. Effects of altering dietary essential fatty acids on requirements for non-steroidal anti-inflammatory drugs in patients with rheumatoid arthritis, a double blind placebo controlled study.Ann. Rheum. Dis. 47:96–104.PubMedGoogle Scholar
  58. 58.
    Corrocher, R., S. Ferrari, M. De Gironcoli, A. Bassi, O. Olivieri, P. Guarini, A. M. Stanzial, A. L. Barba, andL. Grigolini. 1989. Effects of fish-oil supplementation on erythrocyte lipid pattern, malondialdehyde production and glutathion-peroxidase activity in psoriasis.Clin. Chim. Acta 179:121–132.PubMedGoogle Scholar
  59. 59.
    Schena, D., G. C. Chieregato, M. De Gironcoli, D. Girelli, O. Olivieri, A. M. Stanzial, R. Corrocher, A. Bassi, S. Ferrari, P. Perazzoli, P. Guarini, andA. Barba. 1989. Increased erythrocyte membrane arachidonate and platelet malondialdehyde (MDA) production in psoriasis: normalization after fish-oil. Acta Dermatologica Venereologica (Stockholm) 146 (suppl.), 42–44.Google Scholar
  60. 60.
    Burton, J. L., 1989. Dietary fatty acids and inflammatory skin disease.Lancet i:27–31.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • A. Carletto
    • 1
  • P. Bellavite
    • 2
  • P. Guarini
  • D. Biasi
    • 1
  • S. Chirumbolo
    • 2
  • P. Caramaschi
    • 1
  • L. M. Bambara
    • 1
  • R. Corrocher
    • 1
  1. 1.Institute of Medical PathologyItaly
  2. 2.Institute of Clinical Chemistry and MicroscopyUniversity of VeronaItaly

Personalised recommendations