Realization of dimensional reduction at high temperature
- 46 Downloads
- 44 Citations
Abstract
Renormalizable four-dimensional field theories reduce at high temperature to effective three-dimensional field models with generically nonlocal interactions induced by the thermal degrees of freedom. Reduction to a local and renormalizable effective model is analyzed here for the example ofSU(N c ) lattice gauge theory by means of perturbation theory. The infrared problems are cured by applying the coupled large volume and small coupling expansion. ForSU(2) it is shown to the lower orders in this expansion that in the temperature rangeT≧3T c dimensional reduction applies, where we consider the following observables: thermal Polyakov line correlations, out of which the interquark potential is derived, and spatial Wilson loops. We also propose an alternative description, in which the effective theory is a gauge theory that lives on a lattice with one time slice and a least number of effective vertices.
Keywords
Gauge Theory Dimensional Reduction Wilson Loop Time Slice Lattice Gauge TheoryPreview
Unable to display preview. Download preview PDF.
References
- 1.R.J. Rivers: Path integral methods in quantum field theory. Cambridge: Cambridge University Press 1987Google Scholar
- 2.J.I. Kapusta: Finite temperature field theory. Cambridge: Cambridge University Press 1989Google Scholar
- 3.N.P. Landsman: Nucl. Phys. B 322 (1989) 498Google Scholar
- 4.R. Alvarez-Estrada: Fortschr. Phys. 36 (1988) 163Google Scholar
- 5.J. Ambjørn: Commun. Math. Phys. 67 (1979) 109Google Scholar
- 6.T. Appelquist, J. Carazzone: Phys. Rev. D 11 (1975) 2856; T. Appelquist, R.D. Pisarski: Phys. Rev. D23 (1981) 2305Google Scholar
- 7.W.E. Caswell, A.D. Kennedy: Phys. Rev. D 28 (1983) 3073Google Scholar
- 8.S. Nadkarni: Phys. Rev. D 27 (1983) 917Google Scholar
- 9.S. Nadkarni: Phys. Rev. D 38 (1988) 3287Google Scholar
- 10.A.N. Jourjine: Ann. Phys. 155 (1984) 305Google Scholar
- 11.C. Curci, P. Menotti, G. Paffuti: Z. Phys. C — Particles and Fields 26 (1985) 549Google Scholar
- 12.T. Reisz: J. Math. Phys. 32 (1991) 515Google Scholar
- 13.B. Petersson, T. Reisz: Nucl. Phys. B 353 (1991) 757Google Scholar
- 14.T. Reisz: Commun. Math. Phys. 117 (1988) 79Google Scholar
- 15.A. Irbäck et al.: Nucl. Phys. B 363 (1991) 34Google Scholar
- 16.T. Reisz: Commun. Math. Phys. 116 (1988) 573Google Scholar
- 17.A. Coste, A. Gonzalez-Arroyo, J. Jurkiewicz, C.P. Korthals-Altes. Nucl. Phys. B 262 (1985) 67Google Scholar
- 18.P. Weisz: Nucl. Phys. B 212 (1983) 1Google Scholar
- 19.U. Heller, F. Karsch: Nucl. Phys. B 251 [FS13] (1985) 254Google Scholar
- 20.V.S. Dotsenko, S.N. Vergeles: Nucl. Phys. B 169 (1980) 527Google Scholar
- 21.C. Borgs, E. Seiler: Nucl. Phys. B 215 [FS] (1983) 125Google Scholar
- 22.C. Borgs, E. Seiler: Commun. Math Phys. 91 (1983) 329Google Scholar
- 23.T. Reisz: Nucl. Phys. B 318 (1989) 417Google Scholar
- 24.H. Matsumoto, I. Ojima, H. Umezawa: Ann. Phys. 152 (1984) 348Google Scholar
- 25.N.P. Landsman, Ch.G. van Weert: Phys. Rep. 145 (1987) 141Google Scholar
- 26.S. Nadkarni: Phys. Rev. D 33 (1986) 3738Google Scholar