Journal of Soviet Mathematics

, Volume 59, Issue 5, pp 1063–1071 | Cite as

Combinatorial examples in the theory of AF-algebras

  • S. V. Kerov


We give examples of ramification graphs having combinatorial origin. These graphs determine the group of dimensions and traces of the corresponding AF-algebras.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. M. Vershik, “Symmetric groups of high degree,” Dokl. Akad. Nauk SSSR,206, No. 2 (1972).Google Scholar
  2. 2.
    A. M. Vershik and S. V. Kerov, “Locally semisimple algebras. Combinatorial theory and K0-functor,” Itogi Nauki Tekhn., Ser. Sovrem. Probl. Matem., Nov. Dostizh.,26, 3–56 (1955).Google Scholar
  3. 3.
    A. M. Vershik and S. V. Kerov, “K-functor (Grothendieck group) of the infinite symmetric group,” in: Zapiski Nauchn. Semin. Leningr. Otdel. Mat. Inst.,123, 126–151 (1983).Google Scholar
  4. 4.
    S. V. Kerov and A. M. Vershik, “Characters, factor-representations and K-functor of the infinite symmetric group,” in: Proc. Int. Conf. Oper. Alg., Vol. 1 (1980), pp. 23–32.Google Scholar
  5. 5.
    S. V. Kerov, “Polynomial groups of dimensions,” in: Theory of Operators and Theory of Functions [in Russian], Vol. 1, LGU, Leningrad (1983), pp. 185–194.Google Scholar
  6. 6.
    J. F. C. Kingman, “The representation of partition structures,” J. London Math. Soc.,18, 374–380 (1978).Google Scholar
  7. 7.
    J. F. C. Kingman, “Random partitions in population genetics,” Proc. R. Soc. London,A361, 1–20 (1978).Google Scholar
  8. 8.
    I. MacDonald, Symmetric Functions and Hall Polynomials [Russian trnaslation], Moscow (1985).Google Scholar
  9. 9.
    H. Poincaré, C. R. Acad. Sci. France,97, 1418 (1883).Google Scholar
  10. 10.
    L. Geissinger, “Hopf algebras of symmetric functions and class functions,” Lect. Notes Math.,579, 168–181 (1977).Google Scholar
  11. 11.
    G. James, Theory of Representations of Symmetric Groups [Russian translation], Moscow (1982).Google Scholar
  12. 12.
    G. Andrews, Theory of Partitions [Russian translation], Moscow (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • S. V. Kerov

There are no affiliations available

Personalised recommendations