Advertisement

Klinische Wochenschrift

, Volume 58, Issue 5, pp 219–225 | Cite as

Autoantibodies and serum inhibition factors (SIF) in patients with myocarditis

  • B. Maisch
  • P. A. Berg
  • K. Kochsiek
Originalien

Summary

54 patients with acute and “chronic” myocarditis were tested for autoantibodies and serum inhibition factors. 11 patients had a viral myocarditis, 17 a “chronic” myocarditis. By comparing the antibody pattern of sera of patients with defined viral myocarditis with those of patients with myocarditis of unknown etiology we could demonstrate that antisarcolemmal (ASA) and antiendothelial antibodies (AEA) are markers of a viral involvement in heart disease. 10 of the 11 patients with Coxsackie B and Influenza virus myocarditis demonstrated this pattern.

15 out of 26 patients with undefined myocarditis showed the same antibody pattern, in sera of 17 patients with features suggestive of “chronic” myocarditis antiendothelial and antisarcolemmal antibodies occurred less frequently. The latter patients showed antinuclear antibodies in 65% with titres up to 1:40.

Whereas SIF could be demonstrated in all patients with acute viral myocarditis, and in 11 out of 26 patients with acute undefined myocarditis in the early period and only in 3 patients with “chronic” myocarditis, SIF persisted in these 3 patients with chronic myocarditis in whom we suspected an autoimmune process.

Our investigation demonstrates that an etiological classification of undefined myocarditis can be obtained by serological markers and that serum inhibition factors occur transiently in acute and continuously in autoimmune myocarditis.

Key words

Autoantibodies Antisarcolemmal antibodies Antiendothelial antibodies Antimyocardial antibodies Immunosuppressive serum factors Serum inhibition factors Acute and chronic myocarditis Viral diseases 

Glossary

AEA

antiendothelial antibodies

AFA

antifibrillary antibodies

AHA

antiheart antibodies

AMA

antimitochondrial antibodies

ANA

antinuclear antibodies

ASA

antisarcolemmal antibodies

CFT

complement fixation test

DNA

des-oxy-ribonucleic acid

ECG

electrocardiogram

IFA

antiinterfibrillary antibodies

IRA

immune regulatory alpha-globulin

PHA

phytohaemagglutinin

SIF

serum inhibition factors

SMA

smooth muscle antibodies

Autoantikörper und Seruminhibitionsfaktoren bei Patienten mit Myokarditis

Zusammenfassung

54 Patienten mit akuter und chronischer Myokarditis wurden auf Antikörper und Seruminhibitionsfaktoren untersucht. Bei 11 Patienten konnte eine Virusätiologie gesichert werden, bei 17 Patienten bestand der Verdacht auf eine „chronische“ Myokarditis. Aus dem Vergleich der Antikörpermuster zwischen Patienten mit bekannter Virusätiologie und ätiologisch nicht definierter Myokarditis konnte gefolgert werden, daß vor allem Antikörper gegen Sarkolemm und Gefäßendothel Marker eines virusinduzierten Prozesses am Myokard sind. 10 der 11 Patienten mit Influenza, Coxsackie B3-und Coxsackie B4-Myokarditis hatten diese Konstellation. 15 der 26 Patienten mit ätiologisch unklarer Myokarditis wiesen dasselbe Antikörpermuster auf, während bei 17 Patienten mit Verdacht auf chronische Myokarditis antiendotheliale Antikörper und antisarkolemmale Antikörper seltener nachweisbar waren. 65% der Patienten mit „chronischer“ Myokarditis wiesen Antikörper gegen Kerne mit einem Titer bis zu 1:40 auf.

Während Seruminhibitionsfaktoren (SIF) bei allen Patienten mit akuter Virusmyokarditis und bei 11 von 26 Patienten mit akuter, ätiologisch nicht definierter Myokarditis nachweisbar waren, persistierten sie nur bei 3 Patienten mit chronischer Myokarditis, bei denen aufgrund des Auftretens von antinukleären Faktoren und der fehlenden antiendothelialen und antisarkolemmalen Antikörper ein autoimmuner Prozeß angenommen werden könnte.

Die Untersuchungen zeigen, daß eine ätiologische Klassifizierung unklarer Myokarditiden mit serologischen Markern möglich ist und daß Seruminhibitionsfaktoren bei akuten Myokarditiden passager und bei autoimmunen Myokarditiden persistierend vorkommen können.

Schlüsselwörter

Autoantikörper Antisarkolemmale Antikörper Antiendotheliale Antikörper Antimyokardiale Antikörper Immunsuppressive Serumfaktoren Seruminhibitionsfaktoren Akute und chronische Myokarditis Viruserkrankungen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berg, P.A., Brandt, H., Märker, A.: Nachweis und Bedeutung von Antikörpern gegen homologes Gefäßendothel bei Leberund anderen Krankheiten. Verh. Dtsch. Ges. Inn. Med.79, 649–650 (1973)Google Scholar
  2. 2.
    Berg, P.A., Binder, T., Lindner, H., Bannaski, H., Mass, D., Henning, H., Brügel, H.: Heterogenität mitochondrialer Autoantikörper. Dtsch. Med. Wochenschr.100, 1123–1127 (1975)PubMedGoogle Scholar
  3. 3.
    Bertrams, J., Kuwert, E., Selmair, H., Reis, H.E., Wiese, W.: Autoantikörper gegen Lymphozyten (CoCoCy) bei Patienten mit verschiedenen Formen der Hepatitis und Cirrhose. Klin. Wochenschr.54, 227–233 (1976)PubMedGoogle Scholar
  4. 4.
    Bolte, H.D.: Diagnostische Wertigkeit des indirekten Immunfluoreszenztestes zum Nachweis humoraler Antikörper gegen Myokard. Internist16, 180–184 (1975)PubMedGoogle Scholar
  5. 5.
    Brattig, N., Berg, P.A.: Serum inhibitory factors (SIF) in patients with acute and chronic hepatitis and their clinical significance. Clin. Exp. Immunol.25, 40–49 (1976)PubMedGoogle Scholar
  6. 6.
    Burch, G.E., De Pasquale, N.P.: Cardiomyopathies. Viral myocarditis. pp. 376–405. London: J. & A. Churchill Ltd. 1964Google Scholar
  7. 7.
    Burch, G.E., Giles, T.D.: The role of viruses in the production of heart disease. Am. J. Cardiol.29, 231–240 (1972)PubMedGoogle Scholar
  8. 8.
    Burch, G.E., Giles, T.D.: Viral cardiomyopathy, in: Recent advances in studies on cardiac structure and metabolism. Vol. 2 Cardiomyopathies. Bajusz, E., Rona, G. (eds.). pp. 121–139. München: Urban & Schwarzenberg 1976Google Scholar
  9. 9.
    Chisari, F.V., Edgington, T.S.: Lymphocyte E rosette inhibitory factor: A regulatory serum lipoprotein. J. Exp. Med.142, 1092–1107 (1975)PubMedGoogle Scholar
  10. 10.
    Chiu, K.M., Mortensen, R.F., Osmand, A.P., Gewurz, H.: Interactions of alpha-acid glycoprotein with the immune system. I. Purification and effects upon lymphocyte responsiveness. Immunology32, 997–1005 (1977)PubMedGoogle Scholar
  11. 11.
    Coons, A.H., Kaplan, M.M.: Localization of antigens in tissue cells. I. Improvements in a method for the detection of antigen by means of fluorescent antibody. J. Exp. Med.91, 1–13 (1950)PubMedGoogle Scholar
  12. 12.
    Cooperband, S.R., Badger, A.M., Mannick, J.A.: Non-hormonal serum suppressive factors. In: Mitogens in Immunobiology. Oppenheim, J.J., Rosenstreich, D.L. (eds.), pp. 555–572. New York, London: Academic Press 1976Google Scholar
  13. 13.
    Cooperband, S.R., Niberg, R., Schmid, K. et al.: Humoral immunosuppressive factors. Transplant. Proc.8, 225–242 (1976)PubMedGoogle Scholar
  14. 14.
    De Horatius, R.J., Henderson, C., Strickland, R.G.: Lymphocytotoxins in acute and chronic hepatitis. Characterization and relationship to changes in circulating T lymphocytes. Clin. Exp. Immunol.26, 21–27 (1976)PubMedGoogle Scholar
  15. 15.
    Fitzgerald, M.G., Hosking, C.S.: Plasma inhibitors of lymphocyte response to phytohaemagglutinin in children with recurrent infections. Immunol.30, 33–42 (1976)Google Scholar
  16. 16.
    Gluckman, J.C., Bonfils, H., Sanchez, F.: Inhibition of complement-dependant rosette information by sera of patients with chronic glomerulonephritis. Clin. Exp. Immunol.26, 247–252 (1976)PubMedGoogle Scholar
  17. 17.
    Goldstein, I.J., So, L.L., Yand, Y., Callies, Q.C.: Proteincarbohydrate interaction. XIX. The interaction of concanavalin A with IgM and the glycoprotein phytohaemagglutinins of waxbean and the soybean. J. Immunol.103, 695–698 (1969)PubMedGoogle Scholar
  18. 18.
    Gorcezynski, R., Kontiainen, S., Mitchison, N.A., Tigelaar, R.E.: Antigen-antibody complexes as blocking factors on the T lymphocyte surface. In: Cellular selection and regulation in the immune response. Edelman, G.M. (ed.), pp. 143–154. New York: Raven Press 1974Google Scholar
  19. 19.
    Havemann, K., Bürger, S., Dosch, H.M.: Phytohämagglutinin (PHA) und Serumproteine in der Lymphozytenkultur. II. Die Präzipitation von Serumproteinen durch PHA. Z. Ges. Exp. Med.153, 308–323 (1970)Google Scholar
  20. 20.
    Hawkins, B.R., McDonald, M., Dawkins, R.C.: Characterization of immunofluorescent heterophil antibodies which may be confused with autoantibodies. J. Clin. Pathol.30, 299–307 (1977)PubMedGoogle Scholar
  21. 21.
    Kaplan, M.H., Meyeserian, M.: An immunological reaction between group A streptococcal cells and human heart tissue. Lancet1962 I, 706–710Google Scholar
  22. 22.
    Kaplan, M.H., Frengley, J.D.: Autoimmunity to the heart in cardiac disease. Current concepts of the relation of autoimmunity to rheumatic fever, post-cardiotomy and post-infarction syndromes and cardiomyopathies. Am. J. Cardiol.24, 459–473 (1969)PubMedGoogle Scholar
  23. 23.
    Keller, R.H., Tomasi, T.B.: Alpha-fetoprotein synthesis by murine lymphoid cells in allogeneic reactions. J. Exp. Med.143, 1140–1153Google Scholar
  24. 24.
    Kuch, J.: Autoantibodies directed against heart antigens and endocrine reactivity in patients with recent myocardial infarction. Cardiovasc. Res.7, 649–654 (1973)PubMedGoogle Scholar
  25. 25.
    Lyon, E.: Virus disease and the cardiovascular system: A survey. New York, London: Grune & Stratton 1956Google Scholar
  26. 26.
    Maisch, B., Berg, P.A., Kochsiek, K.: Clinical significance of immunopathological findings in patients with postpericardiotomy syndrome. Part I: Relevance of antibody pattern in patients with complete and incomplete postpericardiotomy syndrome. Clin. Exp. Immunol.38, 189–197 (1979)PubMedGoogle Scholar
  27. 27.
    Maisch, B., Berg, P.A., Kochsiek, K.: Immunologische Differenzierung der Perikarditis nach Myokardinfarkt. Intensivmedizin16, 28–32 (1979)Google Scholar
  28. 28.
    McCabe, J.C., Ebert, P.A., Engle, M.A., Zabriskie, J.B.: Circulating heart — reactive antibodies in the post-pericardiotomy syndrome. J. Surg. Res.14, 158–164 (1973)PubMedGoogle Scholar
  29. 29.
    McFarland, H.F.: The effect of measles virus infection on T and B lymphocytes in the mouse. I. Suppression of helper cell activity. J. Immunol.113, 1978–1983 (1974)PubMedGoogle Scholar
  30. 30.
    Miller, F.: Serum-derived immunosuppressive substances. I. Partial purification and range of action. Transplantation21, 179–187 (1976)PubMedGoogle Scholar
  31. 31.
    Moorthy, A.V., Zimmermann, S.W., Burkholder, P.M.: Inhibition of lymphocyte blastogenesis by patients with minimal change-nephrotic syndrome. Lancet1976 I, II, 1160–1163Google Scholar
  32. 32.
    Morse, J.H.: Immunological studies of phytohaemagglutinin. I. Reaction between phytohaemagglutinin and normal sera. Immunology14, 713–724 (1968)PubMedGoogle Scholar
  33. 33.
    Mortensen, R.F., Gewurz, H.: Effects of C-reactive protein on the lymphoid system. II. Inhibition of mixed lymphocyte reactivity and generation of cytotoxic lymphocytes. J. Immunol.116, 1244–1250 (1976)PubMedGoogle Scholar
  34. 34.
    Murgita, R.A., Tomasi, T.B.: Suppression of the immune response by alpha fetoprotein. II. The effect of mouse alpha-fetoprotein on mixed lymphocyte reactivity and mitogeninduced lymphocyte transformation. J. Exp. Med.141, 440–452 (1975)Google Scholar
  35. 35.
    Nakao, M., Mizoguchi, Y., Monna, T., Yamamoto, S., Morisawa, S.: Studies on an inhibitory factor to phytohemagglutinin-induced lymphocyte transformation found in the serum of patients with various liver diseases. Acta Hepato-Gastroenterol.25, 335–343 (1978)Google Scholar
  36. 36.
    Nelson, D.S., Catti, R.A.: Humoral factors influencing lymphocyte transformation. Prog. Allergy21, 261–341 (1976)PubMedGoogle Scholar
  37. 37.
    Nelson, D.S., Schneider, C.N., Penrose, J.M.: Inhibition of lymphocyte transformation by products of macrophages and other cells. In: Mitogens in immunobiology. Oppenheim, J.J., Rosenstreich, D.L. (eds.), pp. 477–494. New York, London: Academic Press 1976Google Scholar
  38. 38.
    Newberry, M.W., Shorey, J.W., Sanford, J.P., Combes, B.: Depression of lymphocyte reactivity to phytohemagglutinin by serum from patients with liver disease. Cellular Immunology6, 87–97 (1973)PubMedGoogle Scholar
  39. 39.
    Panky, G.A.: Effect of viruses on the cardiovascular system. Am. J. Med. Sci.250, 103–114 (1965)PubMedGoogle Scholar
  40. 40.
    Penhale, W.J., Farmer, A., Maccuish, A.C., Irvine, W.J.: A rapid micro-method for the phytohaemagglutinin-induced human lymphocyte transformation test. Clin. Exp. Immunol.18, 155–167 (1974)PubMedGoogle Scholar
  41. 41.
    Rosenberg, B.J., Erlanger, B.F., Beiser, S.M.: Radioimmunochemical studies on nucleoside-specific antibodies using iodinated DNA. J. Immunol.108, 271–279 (1972)PubMedGoogle Scholar
  42. 42.
    Sachs, L.: Statistische Auswertungsmethoden. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  43. 43.
    Tomasi, T.B.: Serum factors which suppress the immune response. In: Regulatory mechanisms in lymphocyte activation. pp. 219–250. Lucas, D.O. (eds.). London, New York: Academic Press 1977Google Scholar
  44. 44.
    Waksman, B.H., Namba, Y.: On soluble mediators of immunologic regulation. Cell. Immunol.21, 161–176 (1976)PubMedGoogle Scholar
  45. 45.
    Wands, J.R., Perrotto, J.L., Alpert, E., Isselbacher, K.J.: Cellmediated immunity in acute and chronic hepatitis. J. Clin. Invest.55, 921–929 (1975)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • B. Maisch
    • 1
  • P. A. Berg
    • 1
  • K. Kochsiek
    • 1
  1. 1.Medizinische Universitätsklinik (Abt. III und II)Tübingen

Personalised recommendations