Journal of Soviet Mathematics

, Volume 10, Issue 3, pp 395–435 | Cite as

Sufficient criteria of convexity

  • Yu. D. Burago
  • V. A. Zalgaller

Abstract

In this article a survey of criteria of convexity of sets and hypersurfaces inRn, in Riemannian and infinite-dimensional linear spaces, is made. Included are the following sections: support property; local convexity; local support; curvature of the boundary; section by planes; uniqueness of closest points; systems of sets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    C. Carathéodory, Math. Ann.,64, 95–115 (1907).CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    H. Brunn, Arch. Math. Phys.,17, 289–300 (1910).Google Scholar
  3. 3.
    H. Minkowski, Geometrie der Zahlen, Berlin (1910).Google Scholar

Literature cited

  1. 1.a
    S. Nakajima, Tohoku Math. J.,29, 227–230 (1928).MATHGoogle Scholar
  2. 2.a
    H. Tietze, Math. Z., 697–707 (1928).Google Scholar
  3. 3.a
    H. Gerike, Math. Z.,43, 110–112 (1937).Google Scholar
  4. 4.
    G. Nöbeling, S.-B. Bayer. Akad. Wiss., 63–67 (1937).Google Scholar
  5. 5.
    L. Pasqualini, Ann. Fac. Sci. Univ. Toulouse, IV s.,2, 1–45 (1938) (Notices: Bull. Acad. Roy. Belg., V s.,22, 1050–1058 (1936); C. R. Acad. Sci. Paris,204, 222–224; 646–648; 1153–1155 (1937)).MATHMathSciNetGoogle Scholar
  6. 6.
    L. Pasqualini, Mathematica, Cluj,16, 102–108 (1940).MATHMathSciNetGoogle Scholar
  7. 7.
    F. A. Valentine, Can. J. Math.,2, 481–488 (1950).MATHMathSciNetGoogle Scholar
  8. 8.
    V. L. Klee, Duke Math. J.,18, No. 2, 443–466 (1951).MATHMathSciNetGoogle Scholar
  9. 9.
    S. van Heijenoort, Comm. Pure Appl. Math.,5, 223–242 (1952).MathSciNetGoogle Scholar
  10. 10.
    T. Tamura and J. Gakugei, Tokushima Univ. Natur. Sci. Math.,3, 24–27 (1953).Google Scholar
  11. 11.
    W. Fenchel, Colloq. Quest. Realite Geom. Liege (1955), Paris (1956), 95–704.Google Scholar
  12. 12.
    F. A. Valentine, Proc. Am. Math. Soc.,11, No. 1, 112–116 (1960).MATHMathSciNetGoogle Scholar
  13. 13.
    R. Sacksteder, E. G. Straus, and F. Valentine, J. London Math. Soc.,36, No. 1, 52–56 (1961).MathSciNetGoogle Scholar
  14. 14.
    D. G. Larman, J. London Math. Soc.,43, No. 3, 419–420 (1968).MATHMathSciNetGoogle Scholar
  15. 15.
    R. E. Greene and H. Wu, Ann. Math.,94, No. 1, 1–20 (1971).MathSciNetGoogle Scholar
  16. 16.
    A. A. Borisenko, Ukr. Geom. Sb.,12, 36–45 (1972).MATHMathSciNetGoogle Scholar
  17. 17.
    A. A. Borisenko, Ukr. Geom. Sb.,13, 18–27 (1973).MATHMathSciNetGoogle Scholar
  18. 18.
    L. B. Jonker and R. D. Norman, Can. J. Math.,25, No. 3, 531–538 (1973).MathSciNetGoogle Scholar
  19. 19.
    A. Horn and F. Valentine, Duke Math. J., 16, 131–140 (1949).CrossRefMathSciNetGoogle Scholar
  20. 20.
    J. Hjelmslev, Acta Math.,87, Nos. 1–2, 59–82 (1952).MATHMathSciNetGoogle Scholar
  21. 21.
    P. Lelong, J. Analyse Math.,2, 178–208 (1952–1953).MathSciNetGoogle Scholar
  22. 22.
    K. Oka, Jpn. J. Math.,23, 97–155 (1953).MATHMathSciNetGoogle Scholar
  23. 23.
    S. Hitotumatu, J. Math. Soc. Jpn.,6, 177–195 (1954).MATHMathSciNetGoogle Scholar
  24. 24.
    H. Bremermann, Trans. Am. Math. Soc.,82, 17–51 (1956).MATHMathSciNetGoogle Scholar
  25. 25.
    P. Hartman, Pac. J. Math.,9, No. 3, 707–713 (1959).MATHMathSciNetGoogle Scholar
  26. 26.
    L. Chamard, Gaz. Mat.,21, No. 78, 1–9 (1960).MATHMathSciNetGoogle Scholar
  27. 27.
    W. L. Stamey and J. H. Marr, Can. J. Math.,15, No. 1, 152–156 (1963).MathSciNetGoogle Scholar
  28. 28.
    V. S. Vladimirov, Methods of the Theory of Functions of Several Complex Variables, MIT Press (1966).Google Scholar
  29. 29.
    F. Valentine, Proc. Am. Math. Soc.,16, 1305–1310 (1965).MATHMathSciNetGoogle Scholar
  30. 30.
    F. Valentine, Israel J. Math.,3, No. 1, 39–42 (1965).MATHMathSciNetGoogle Scholar
  31. 31.
    R. L. McKinney, Can J. Math.,18, No. 4, 883–886 (1966).MATHMathSciNetGoogle Scholar
  32. 32.
    B. V. Shabat, Introduction to Complex Analysis [in Russian], Nauka, Moscow (1968).Google Scholar
  33. 33.
    A. V. Pogorelov, Intrinsic Geometry of Convex Surfaces [in Russian], Nauka, Moscow (1969).Google Scholar
  34. 34.
    W. R. Hare and J. W. Kennely, Proc. Am. Math. Soc.,25, No. 2, 379–380 (1970).Google Scholar
  35. 35.
    M. Guay and D. Kay, Israel J. Math.,8, 39–52 (1970).MathSciNetGoogle Scholar
  36. 36.
    M. Guay and D. Kay, Israel J. Math.,10, No. 2, 196–209 (1971).MathSciNetGoogle Scholar
  37. 37.
    J. Stanek and C. Bee-Yee, Diss. Abstr. Int.,32, No. 2, 1084 (1971).Google Scholar
  38. 38.
    N. Stavrakas, W. Hare, and J. Kennelly, Proc. Am. Math. Soc.,27, 331–336 (1971).Google Scholar
  39. 39.
    N. M. Stavrakas, Proc. Am. Math. Soc.,34, 222–224 (1972).MATHMathSciNetGoogle Scholar
  40. 40.
    N. Stavrakas and R. Jamison, Proc. Am. Math. Soc.,36, No. 1, 229–230 (1972).MathSciNetGoogle Scholar
  41. 41.
    N. Stavrakas, Bull. Am. Math. Soc.,79, No. 2, 403–406 (1973).MathSciNetGoogle Scholar
  42. 42.
    N. Stavrakas, Proc. Am. Math. Soc.,40, No. 2, 565–567 (1973).MATHMathSciNetGoogle Scholar

Literature cited

  1. 1.b
    F. Leja and W. Wilkosz, Ann. Soc. Polon. Math.,2, 222–224 (1924).Google Scholar
  2. 2.b
    H. Tietze, J. Reine Angew. Math.,158, 168–172 (1927).MATHGoogle Scholar
  3. 3.b
    H. Tietze, Math. Ann.,99, 394–398 (1928).MATHMathSciNetGoogle Scholar
  4. 4.b
    K. Reinhardt, J. Ber. Deutsch. Math.-Vereining.,38, 191–192 (1929).MATHGoogle Scholar
  5. 5.b
    W. Süss, Tohoku Math. J.,32 362–364 (1930).MATHGoogle Scholar
  6. 6.b
    L. Bieberbach, Differentialgeometrie, Berlin (1932).Google Scholar
  7. 7.b
    F. A. Valentine, Convex Sets, New York (1964).Google Scholar
  8. 8.b
    N. V. Efimov, Mat. Sb.,64, No. 2, 286–320 (1964).MATHMathSciNetGoogle Scholar
  9. 9.b
    L. Nirenberg, J. Fac. Sci. Univ. Tokyo, Sec. 1A,17, Nos. 1–2, 397–402 (1970).MATHMathSciNetGoogle Scholar
  10. 10.b
    H. Tietze, J. Reine Angew. Math.,160, 67–69 (1929).MATHGoogle Scholar
  11. 11.b
    B. Kaufmann, J. Reine Angew. Math.,164, 112–127 (1930).Google Scholar
  12. 12.b
    B. Kaufmann, J. Reine Angew. Math.,166, 151–166 (1932).MATHGoogle Scholar
  13. 13.b
    A. D. Aleksandrov, Intrinsic Geometry of Convex Surfaces, Fizmatgiz [in Russian], Moscow (1948).Google Scholar
  14. 14.b
    F. W. Warner, Trans. Am. Math. Soc.,122, 311–356 (1966).MathSciNetGoogle Scholar
  15. 15.b
    J. Cheeger and D. Gromoll, Ann. Math.,96, No. 3, 413–443 (1972).MathSciNetGoogle Scholar
  16. 16.b
    V. A. Sharafutdinov, Sib. Mat. Zh.,15, No. 1, 177–191 (1974).Google Scholar
  17. 17.b
    V. S. Vladimirov, Methods of the Theory of Functions of Several Complex Variables [in Russian], Nauka, Moscow (1964).Google Scholar

Literature cited

  1. 1.c
    J. Hadamard, J. Math. Pur. Appl.,3, 331–387 (1897).MATHGoogle Scholar
  2. 2.c
    J. Hadamard, Bull. Soc. Math. France,31, 300–301 (1903).MATHMathSciNetGoogle Scholar
  3. 3.c
    J. J. Stoker, Comp. Math., No. 1, 55–88 (1936).Google Scholar
  4. 4.c
    A. D. Aleksandrov, Mat. Sb.,4, 69–77 (1938).Google Scholar
  5. 5.c
    A. V. Pogorelov, “Surfaces of bounded extrinsic curvature,” in: Extrinsic Geometry of Convex Surfaces [in Russian], Nauka (1969), Chap. 9.Google Scholar
  6. 6.c (I)
    S. S. Chern and R. K. Lashof, Am. J. Math.,79, 308–318 (1957);MathSciNetGoogle Scholar
  7. 6.c (II)
    , Mich. Math. J.,5, 5–12, (1958).MathSciNetGoogle Scholar
  8. 7.c
    R. Sacksteder, Am. J. Math.,82, No. 3, 609–629 (1960).MATHMathSciNetGoogle Scholar
  9. 8.c
    I. A. Danelich, Mat. Sb.,62, No. 2, 180–185 (1963).MATHMathSciNetGoogle Scholar
  10. 9.c
    D. Ferus, Lecture Notes in Math., No. 66, Springer-Verlag, Berlin-New York (1968).Google Scholar
  11. 10.c
    M. P. do Carmo and E. Lima, Arch. der Math.,20, No. 2, 173–175 (1969).Google Scholar
  12. 11.c
    N. H. Kuiper, Invent. Math.,10, No. 3, 209–238 (1970).MATHMathSciNetGoogle Scholar
  13. 12.c
    S. Z. Shefel', Sib. Mat. Zh.,10, No. 2, 459–466 (1969).MATHMathSciNetGoogle Scholar
  14. 13.c
    T. F. Banchoff, Proc. Am. Math. Soc.,29, No. 1, 133–137 (1971).MATHMathSciNetGoogle Scholar
  15. 14.c
    L. P. Eisenhart, Riemannian Geometry, Princeton Univ. Press, Princeton (1926).Google Scholar
  16. 15.c
    P. Hartman and L. Nirenberg, Am. J. Math.,81, 901–920 (1959).MathSciNetGoogle Scholar
  17. 16.c
    A. D. Aleksandrov and V. A. Zalgaller, Tr. Mat. Inst. Akad. Nauk,63 (1962).Google Scholar
  18. 17.c
    J. Milnor, Morse Theory, Princeton Univ. Press, Princeton (1963).Google Scholar
  19. 18.
    T. J. Willmore and B. A. Saleemi, J. London Math. Soc.,41, No. 1, 153–160 (1966).MathSciNetGoogle Scholar
  20. 19.
    S. Sternberg, Lectures on Differential Geometry, Prentice-Hall (1964).Google Scholar
  21. 20.
    J. T. Schwartz, Differential Geometry and Topology, Gordon and Breach (1968).Google Scholar
  22. 21.
    D. Gromoll, W. Klingenberg, and W. Meyer, Riemannian Geometry in the Large [Russian translation] (1971).Google Scholar
  23. 22.
    S. Z. Shefel', Sib. Mat. Zh.,11, No. 2, 442–460 (1970).MATHMathSciNetGoogle Scholar
  24. 23.
    N. Grossman, J. Different. Geom.,7, Nos. 3–4, 607–614 (1972).MATHMathSciNetGoogle Scholar
  25. 24.
    K. Abe, J. Different. Geom.,7, Nos. 3–4, 453–460 (1972).MATHGoogle Scholar

Literature cited

  1. 1.d
    J. Schreier, Bull. Inst. Acad. Polon. Sci. A, No. 4/8, 155–157 (1933).Google Scholar
  2. 2.d
    A. Marchaud, Bull. Sci. Math., IIs.,58, 52–57 (1934).MATHGoogle Scholar
  3. 3.d
    G. Aumann, Deutsche Math.,1, 108 (1936).MATHGoogle Scholar
  4. 4.d
    G. Aumann, Deutsche Math.,1, 162–165 (1936).MATHGoogle Scholar
  5. 5.d
    G. Aumann, Ann. Math., IIs.,37, 443–447 (1936). (Announced in: Proc. Nat. Acad. Sci. USA,21, 358–359 (1935).)MATHMathSciNetGoogle Scholar
  6. 6.d
    I. M. Liberman, Mat. Sb.,13 (55), 239–262 (1943). (Announced in: Dokl. Akad. Nauk SSSR,19, 341–342 (1938).)MATHMathSciNetGoogle Scholar
  7. 7.d
    F. A. Valentine, Bull. Am. Math. Soc.,10, 925–931 (1946).MathSciNetGoogle Scholar
  8. 8.d
    H. Künneth, J. Reine Angew. Math.,191, Nos. 1–2, 158–164 (1953).MATHMathSciNetGoogle Scholar
  9. 9.d
    H. W. Kuhn, Proc. Am. Math. Soc.,5, No. 5, 777–779 (1954).MATHMathSciNetGoogle Scholar
  10. 10.d
    S. Stein, Proc. Am. Math. Soc.,5, 745–747 (1954).MATHGoogle Scholar
  11. 11.d
    Colloq. Quest. Réalité Géom. Liège (1955); Paris (1956).Google Scholar
  12. 12.d
    H. Steinhaus, Fund. Math.,41, 284–290 (1955).MATHMathSciNetGoogle Scholar
  13. 13.d
    S. Stein, Math. Ann.,132, 148–149 (1956).MATHMathSciNetGoogle Scholar
  14. 14.d
    S. Stein, Fund. Math.,45, No. 2, 182–185 (1958).MATHMathSciNetGoogle Scholar
  15. 15.d
    J. Fary, Am. Math. Monthly,69, No. 1, 25–31 (1962).MATHMathSciNetGoogle Scholar
  16. 16.d
    A. Kosinski, Proc. Am. Math. Soc.,13, 931–933 (1962).MATHMathSciNetGoogle Scholar
  17. 17.d
    A. L. Verner, Vestn. Leningr. Gos. Univ., No. 13, 121–125 (1963).MATHMathSciNetGoogle Scholar
  18. 18.d
    E. Asplund, Israel J. Math.,1, No. 3, 161–162 (1963).MATHMathSciNetGoogle Scholar
  19. 19.d
    D. G. Bourgin, Proc. Am. Math. Soc.,16, No. 6, 1311–1312 (1965).MATHMathSciNetGoogle Scholar

Literature cited

  1. 1.e
    L. P. Vlasov, “Approximate properties of sets in linear normed spaces,” Usp. Mat. Nauk,28, No. 6, 3–66 (1973). (This survey contains a bibliography of 140 items.)MATHMathSciNetGoogle Scholar
  2. 2.e
    L. Beretta and A. Maxia, Univ. Roma e Ist. Naz. Alta Mat. Rend. Mat., Ser. 5,1 1–64 (1940).MathSciNetGoogle Scholar
  3. 3.e
    T. S. Motzkin, E. G. Straus, and F. A. Valentine, Pac. J. Math.,3, 221–232 (1953).MathSciNetGoogle Scholar
  4. 4.e
    G. K. Kalisch and E. G. Straus, An. Acad. Brasil Ci.,29, 501–519 (1957).MathSciNetGoogle Scholar
  5. 5.e
    I. Singer, Rev. Math. Pures Appl., RPR,2, 245–262 (1957).Google Scholar
  6. 6.e
    F. Konstantinesku, Dokl. Akad. Nauk SSSR,130, No. 1, 21–22 (1960).MATHMathSciNetGoogle Scholar
  7. 7.e
    P. K. Belobrov, Izv. Vyssh. Uchebn. Zaved., Mat., No. 1, 3–9 (1964).MATHMathSciNetGoogle Scholar
  8. 8.e
    V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables [in Russian], Nauka, Moscow (1964).Google Scholar
  9. 9.e
    E. Asplund, Proc. Colloq. Convexity, Copenhagen (1956); Copenhagen (1967), pp. 9–10.Google Scholar
  10. 10.e
    A. Brønsted, Proc. Colloq. Convexity, Copenhagen (1965); Copenhagen (1967), pp. 18–19.Google Scholar
  11. 11.e
    E. Asplund, Israel J. Math.,5, No. 3, 201–209 (1967).MATHMathSciNetGoogle Scholar
  12. 12.e
    L. Calabi and W. E. Hartnett, Am. Math. Monthly,75, No. 4, 335–342 (1968).MathSciNetGoogle Scholar
  13. 13.e
    L. Calabi and W. E. Hartnett, Proc. Am. Math. Soc.,19, No. 6, 1495–1498 (1968).MathSciNetGoogle Scholar
  14. 14.e
    S. Babadzhanov and A. Saliev, Papers of the Fourth Scientific Conference of the Faculty of the Samarkand State Pedagogical Inst., Natural Science Series, Samarkand (1970), pp. 57–58.Google Scholar
  15. 15.e
    B. Brosowski and F. Deutsch, Bull. Am. Math. Soc.,78, No. 6, 974–978 (1972).MathSciNetGoogle Scholar
  16. 16.e
    H. Fachoury, C. R. Acad. Sci.,276, No. 1, A45-A48 (1973).Google Scholar

Literature cited

  1. 1.f
    A. Dvoretzky, Pac. J. Math.,5, No. 3, 345–350 (1955).MATHMathSciNetGoogle Scholar
  2. 2.f
    V. S. Rublev, Mat. Zametki,2, No. 3, 319–323 (1967).MATHMathSciNetGoogle Scholar
  3. 3.f
    H. Guggenheimer, Am. Math. Monthly,78, No. 3, 278–279 (1971).MATHMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Yu. D. Burago
  • V. A. Zalgaller

There are no affiliations available

Personalised recommendations