Advertisement

Archiv für Elektrotechnik

, Volume 64, Issue 1–2, pp 43–48 | Cite as

Corona-onset field-strength calculations and the equivalent radius concept

  • I. W. McAllister
  • A. Pedersen
Article

Contents

The concept of the equivalent radius is examined in relation to its application to the evaluation of coronaonset field-strengths in atmospheric air. It is shown that the use of this concept provides erroneous values. The underlying reasons for this situation are discussed in detail, such that the basis for a physically meaningful approach to corona onset calculations is established.

Keywords

Equivalent Radius Onset Calculation Meaningful Approach Corona Onset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Berechnung von Koronaanfangsfeldstärken und Begriff des äquivalenten Radius

Übersicht

Der Begriff des äquivalenten Radius wird untersucht im Hinblick auf seine Anwendung zur Berechnung von Koronaanfangsfeldstärken für atmosphärische Luft. Es wird gezeigt, daß die Benutzung dieses Begriffes zu falschen Werten führt. Die Ursachen dieser Fehler werden in Einzelheiten diskutiert; aus dieser Diskussion geht die Grundlage einer physikalisch sinnvollen Methode zur Berechnung von Koronaanfang hervor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jones, B.; Waters, R. T.: Air insulation at large spacings. Proc. IEE 125 (1978) 1152–1176Google Scholar
  2. 2.
    Les Renardières Group: Positive discharges in long air gaps at Les Renardières-1975 results and conclusions. Electra No 53 (1977) 31–153Google Scholar
  3. 3.
    Moon, P.; Spencer, D. E.: Field Theory for Engineers. Princeton: Van Nostrand (1961) ch. 9Google Scholar
  4. 4.
    Dean, G. R.: The potential and electrostatic force in the field of two metal spherical electrodes. Phys. Rev. (1st series) 35 (1912) 459–469Google Scholar
  5. 5.
    Steinbigler, H.: Anfangsfeldstärken und Ausnutzungsfaktoren rotationssymmetrischer Elektrodenanordnungen in Luft. Diss. TU München (1969)Google Scholar
  6. 6.
    Les Renardières Group: Research on long air gap discharges at Les Renardières-1973 results. Electra No. 35 (1974) 49–156Google Scholar
  7. 7.
    Les Renardières Group: Research on long air gap discharges at Les Renardières. Electra No. 23 (1972) 53–157Google Scholar
  8. 8.
    McAllister, I. W.; Crichton, G. C.; Bregnsbo, E.: Experimental study on the onset of positive corona in atmospheric air. J. Appl. Phys. 50, (1979) 6797–6805Google Scholar
  9. 9.
    Blair, D. T. A.: Breakdown Voltage Characteristics —in Meek, J. M. and Craggs, J. D. (ed.): Electrical Breakdown of Gases. Chichester: Wiley (1978)Google Scholar
  10. 10.
    Schumann, W. O.: Über das Minimum der Durchbruchfeldstärke bei Kugelelektroden. Arch. f. Elektrotech. 12 (1923) 593–608Google Scholar
  11. 11.
    Gänger, B.: Der elektrische Durchschlag von Gasen. Berlin: Springer (1953) ch. 8Google Scholar
  12. 12.
    Boyd, H. A.; Tedford D. J.: The mechanism of breakdown of ambient air in long uniform-field gaps. J. Phys. D: Appl. Phys. 4 (1971) 1140–1146Google Scholar
  13. 13.
    Boyd, H. A.; Bruce, F. M.; Tedford, D. J.: Sparkover in long uniform-field gaps. Nature 210 (1966) 719–720Google Scholar
  14. 14.
    Durand, E.: Électrostatique. Tome II. Paris: Masson (1966) 10–11Google Scholar
  15. 15.
    Nasser, E.; Heiszler, M.: Mathematical-physical model of the streamer in nonuniform fields. J. Appl. Phys. 45 (1974) 3396–3401Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • I. W. McAllister
    • 1
  • A. Pedersen
    • 1
  1. 1.Department of Physics, Section IIThe Technical UniversityLyngbyDenmark

Personalised recommendations