Advertisement

Zeitschrift für Physik C Particles and Fields

, Volume 56, Issue 4, pp 623–628 | Cite as

Photon-deuteron diffractive scattering

  • Nikolai N. Nikolaev
  • Vladimir R. Zoller
Article

Abstract

One expects a similarity of the energy dependence of the differenceσtot(γ*p)−σtot(γ*n) for virtual (deep inelastic scatteringQ2m2) and real (Q2=0) photons. Previous analysis of μD structure functions with allowence for nuclear shadowing (NS) in the deuteron has led to conclusion thatσtot(γ*p)−σtot(γ*n)<0 atx<0.015. The early evidence from the real photoproduction data wasσtot(γp)−σtot(σn)<0. We critically reexamine determinations of the differenceσtot(γp)−σtot(σn), using more accurate calculations of NS correction toσtot(γD), and discuss a possibility ofσtot(γn)<σtot(σp) at moderately high energies.

Keywords

Field Theory Elementary Particle Quantum Field Theory Structure Function Previous Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.B. Okun, I.Ya. Pomeranchuck: ZhETF, 30 (1956) 424Google Scholar
  2. 2.
    New Muon Collab., P. Amaudruz et al.: Phys. Rev. Lett. 66 (1991) 560Google Scholar
  3. 3.
    N.N. Nikolaev: Invited talk at 6th Int. Conf. on Elastic and Diffractive Scattering, La Biodola, Isola d'Elba, 1991; Preprint DFTT-32/91Google Scholar
  4. 4.
    V.R. Zoller: Phys. Lett. B279 (1992) 145Google Scholar
  5. 5.
    V.R. Zoller: Z. Phys. C—Particles and Fields 53 (1992), 443Google Scholar
  6. 6.
    S.D. Ellis, W.J. Stirling: Phys. Lett. 256B (1991) 258.Google Scholar
  7. 7.
    K. Gottfried: Phys. Rev. Lett. 18 (1967) 1174; J.D. Bjorken, E.A. Paschos: Phys. Rev. 185 (1969) 1975; P.V. Landshoff, J.C. Polkinghorne: Nucl. Phys. B28 (1971) 240Google Scholar
  8. 8.
    D.O. Caldwell et al.: Phys. Rev. D7 (1973) 1362Google Scholar
  9. 9.
    T.J. Chapin, et al.: Phys. Rev. D31 (1985) 17Google Scholar
  10. 10.
    L. Stodolsky: Phys. Rev. Lett. 18 (1967) 135; V.N. Gribov: Sov. Phys. JETP 30 (1970) 709Google Scholar
  11. 11.
    V.N. Gribov: Sov. Phys. JETP 29 (1969) 483Google Scholar
  12. 12.
    V.V. Anisovich et al.: Quark model and high energy collisions. Singapore: World Scientific 1985Google Scholar
  13. 13.
    V. Franco, G.K. Varma: Phys. Rev. C12 (1975) 225Google Scholar
  14. 14.
    L. Bertocchi, D. Treleani: Nuovo Cimento A54 (1979) 113Google Scholar
  15. 15.
    B. Badelek, J. Kwiecinski: Nucl. Phys. B370 (1992) 278Google Scholar
  16. 16.
    N.N. Nikolaev, V.R. Zoller: Preprint ITEP-118-91Google Scholar
  17. 17.
    T.H. Bauer et al.: Rev. Mod. Phys. 50 (1978); J. Kwiecinski, B. Badelek: Z. Phys. C—Particles and Fields 43 (1989) 251Google Scholar
  18. 18.
    S.J. Brodsky, J. Pumplin: Phys. Rev. 182 (1969) 1795Google Scholar
  19. 19.
    M. Arneodo, C. Peroni: Nucl. Phys. B (Proc. Suppl.) 12 (1990) 149Google Scholar
  20. 20.
    N.N. Nikolaev, B.G. Zakharov: Z. Phys. C—Particles and Fields 53 (1992) 331Google Scholar
  21. 21.
    P.V. Landshoff, J.C. Polkinghorne: Phys. Rev. D18 (1978) 153Google Scholar
  22. 22.
    D.O. Caldwell et al.: Phys. Rev. D42 (1979) 553Google Scholar
  23. 23.
    N.N. Nikolaev, B.G. Zakharov: Phys. Lett. B260 (1991) 607; Z. Phys. C—Particles and Fields 49 (1991) 607Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Nikolai N. Nikolaev
    • 1
  • Vladimir R. Zoller
    • 2
  1. 1.L.D. Landau Institute for Theoretical PhysicsGSP1 117 940MoscowRussian Federation
  2. 2.Institute of Theoretical & Experimental PhysicsMoscowRussian Federation

Personalised recommendations