Mathematische Zeitschrift

, Volume 37, Issue 1, pp 647–668 | Cite as

Notes on random functions

  • R. E. A. C. Paley
  • N. Wiener
  • A. Zygmund
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. E. Borel (1): Les probabilités dénombrables et leurs applications arithmétiques, Rend. di Palermo27 (1904), p. 247–271.Google Scholar
  2. Borel (2): The book of the opening of the Rice Institute. Houston (Texas) 1917.Google Scholar
  3. R. E. A. C. Paley and A Zygmund (1), (2), (3): On some series of functions (1), (2), Proc. Camb. Phil. Soc.26 (1930), p. 337–357, 458–474, (3) to appear soon.Google Scholar
  4. E. Perrin, (1): Les atomes, 4e éd. Paris, 1914.Google Scholar
  5. Perrin (2): Brownian movement and molecular reality. Tr. by F. Soddy, London, 1910.Google Scholar
  6. H. Rademacher (1): Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen. Math. Annalen87 (1922), S. 112–138.Google Scholar
  7. N. Wiener (1): Generalized harmonic analysis. Acta Mathematica55 (1930), p. 117–258.Google Scholar
  8. Wiener (2): Differential-space. Journal of Mathematics and Physics2 (1923), p. 131–174.Google Scholar
  9. A. Zygmund (1): On the convergence of lacunary trigonometric series, Fundamenta Math.16, (1930), p. 90–107.Google Scholar

Copyright information

© Springer-Verlag 1933

Authors and Affiliations

  • R. E. A. C. Paley
  • N. Wiener
  • A. Zygmund

There are no affiliations available

Personalised recommendations