Mathematische Zeitschrift

, Volume 37, Issue 1, pp 416–423 | Cite as

Some Tauberian theorems

  • L. S. Bosanquet
  • M. L. Cartwright


Tauberian Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Andersen, Studier over Cesaros Summabilitetsmetode. (Copenhagen, 1921).Google Scholar
  2. 2.
    L. S. Bosanquet and M. L. Cartwright, On the Hölder and Cesàro Means of an analytic function. Math. Zeitschr.37 (1933), S. 170–192.Google Scholar
  3. 3.
    G. H. Hardy and J. E. Littlewood, Solution of the Cesaro summability problem for power series and Fourier series. Math. Zeitschr.19 (1924), p. 67–96.Google Scholar
  4. 4.
    ——, Tauberian theorems concerning power series, etc. Proc. London Math. Soc. (2),13 (1914), p. 174–191.Google Scholar
  5. 5.
    ——: Abel's theorem and its converse. Proc. London Math. Soc. (2),18 (1918), p. 205–235.Google Scholar
  6. 6.
    ——: Notes on the theory of series XVI: Two Tauberian theorems. Journ. London Math. Soc.6 (1931), p. 281–286.Google Scholar
  7. 7.
    G. Julia, Lecons sur les fonctions uniformes. (Paris 1923).Google Scholar
  8. 8.
    E. Landau, Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie. 2nd. Edn. (Berlin 1929).Google Scholar
  9. 9.
    J. E. Littlewood, The converse of Abel's theorem on power series. Proc. London Math. Soc. (2),9 (1910), p. 434–448.Google Scholar
  10. 10.
    P. Montel, Sur la représentation conforme. Journ. de Math. (4)3, (1917), p. 1–54.Google Scholar
  11. 11.
    L. Neder, Über Taubersche Bedingungen. Proc. London Math. Soc. (2)23, (1923), p. 172–184.Google Scholar
  12. 12.
    G. Polya, Aufgaben und Lehrsätze aus der Analysis, Vol. I (Berlin 1925).Google Scholar
  13. 13.
    N. Wiener, A one-sided Tauberian theorem. Math. Zeitschr.36 (1933), S. 787–789.Google Scholar

Copyright information

© Springer-Verlag 1933

Authors and Affiliations

  • L. S. Bosanquet
    • 1
  • M. L. Cartwright
    • 2
  1. 1.London
  2. 2.Cambridge

Personalised recommendations