Mathematische Zeitschrift

, Volume 37, Issue 1, pp 170–192 | Cite as

On the Hölder and Cesàro means of an analytic function

  • L. S. Bosanquet
  • M. L. Cartwright


Analytic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Andersen, Studier over Cesàros summabilitetsmethode (Copenhagen 1921).Google Scholar
  2. 2.
    H. Bohr, On the limit values of analytic functions. Journ. London Math. Soc.2 (1927), p. 180–181.Google Scholar
  3. 3.
    L. S. Bosanquet, On Abel's integral equation and fractional integrals. Proc. London Math. Soc. (2)31 (1930), p. 134–143.Google Scholar
  4. 4.
    —, On the summability of Fourier series. Proc. London Math. Soc. (2)31 (1930), p. 144–164.Google Scholar
  5. 5.
    —, Note on the limit of a function at a point. Journ. London Math. Soc.7 (1932), p. 100–105.Google Scholar
  6. 6.
    —, On the summability of power series. Annals of Math.33 (1932), p. 758–770.Google Scholar
  7. 7.
    G. H. Hardy and J. E. Littlewood, The equivalence of certain integral means. Proc. London Math. Soc. (2)22 (1924), p. xi-xiv.Google Scholar
  8. 8.
    ——, Solution of the Cesàro summability problem for power series and Fourier series. Math. Zeitschr.19 (1924), S. 67–96.Google Scholar
  9. 9.
    ——, Some properties of fractional integrals. II. Math. Zeitschr.34 (1931), S. 403–439.Google Scholar
  10. 10.
    A. E. Ingham, A note on the converse of Abel's continuity theorem. Proc. London Math. Soc. (2)23 (1924), p. 326–336.Google Scholar
  11. 11.
    M. Jacob, Über die Äquivalenze der Cesàroschen und der Hölderschen Mittel für Integrale bei gleicher reellen Ordnung κ>0. Math. Zeitschr.26 (1927), S. 672–682.Google Scholar
  12. 12.
    P. Montel, Sur la représentation conforme. Journ. de Math. (7)3 (1917), p. 1–54.Google Scholar
  13. 13.
    A. C. Offord, On the summability of power series. Proc. London Math. Soc.2 (33) (1932), p. 467–480.Google Scholar
  14. 14.
    G. Pólya und G. Szegö, Aufgaben und Lehrsätze, Bd. 1, Berlin 1925.Google Scholar
  15. 15.
    M. Riesz, Sur un théorème de la moyenne et ses applications. Acta Univ. Hungaricae, Szeged,1 (1923), p. 114–126.Google Scholar

Copyright information

© Springer-Verlag 1933

Authors and Affiliations

  • L. S. Bosanquet
    • 1
  • M. L. Cartwright
    • 2
  1. 1.London
  2. 2.Cambridge

Personalised recommendations