Journal of Mammalian Evolution

, Volume 2, Issue 3, pp 157–184 | Cite as

Phylogenetic aspects of Cetacean origins: A morphological perspective

  • J. G. M. Thewissen


The evolutionary steps leading up to the origin of cetaceans involved pervasive changes in the masticatory apparatus, the ear, and limb morphology. These changes bear heavily on the phylogenetic relationships of Cetacea, and are investigated here on the basis of two of its earliest members:Pakicetus andAmbulocetus. A phylogenetic analysis of cetaceans, five groups of mesonychians, and five other groups of ungulates indicates thatPakicetus is the sister group to all other cetaceans, and that Cete (mesonychians and Cetacea) is a monophyletic group.

Key Words

Cetacea Archaeoceti Condylarthra Mesonychia phylogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Andrews, C. W. (1906).A Descriptive Catalogue of the Tertiary Vertebrata of the Fayum, Egypt, British Museum (Natural History), London.Google Scholar
  2. Archibald, J. D. (in press). The Archaic Ungulates (“Condylarthra”). In:Evolution of Tertiary Mammals of North America, C. Janis, K. Scott, and L. Jacobs, eds., Cambridge University Press, Cambridge, MA.Google Scholar
  3. Árnason, Ú., and Gullberg, A. (1994). Relationship of baleen whales established by cytochrome-b gene sequence comparison.Nature 367: 726–728.PubMedGoogle Scholar
  4. Árnason, Ú., and Ledie, C. (1993). The use of highly repetitive DNA for resolving cetacean and pinniped phylogenies. In:Mammal Phylogeny, Placentals, G. S. Szalay, M. J. Novacek, and M. C. McKenna. eds., pp. 74–80. Springer-Verlag, New York.Google Scholar
  5. Árnason, Ú., Gullberg, A., and Widegren, B. (1991). The complete nucleotide sequence of the mitochondrial DNA of the fin whale,Balaenoptera physalus.J. Molec. Evol. 33: 556–568.PubMedGoogle Scholar
  6. Bajpai, S. (1990). Geology and Palaeontology of Some Late Cretaceous and Middle Eocene Sequences of Kachchh, Gujarat, Western India. PhD Thesis, Panjab University, Chandigarh, India.Google Scholar
  7. Barnes, L. G. (1984). Whales, dolphins, and porpoises: Origin and evolution of the Cetacea. In: Mammals. notes for a short course, P. D. Gingerich and C. E. Badgley, eds.,University Tennessee, Studies in Geology 8: 139–154.Google Scholar
  8. Barnes, L. G., and Mitchell, E. (1978). Cetacea. In:Evolution of African Mammals V. J. Maglio and H. B. S. Cooke, eds., pp. 582–602, Harvard University Press, Cambridge, MA.Google Scholar
  9. Barnes, L. G., Domning, D. P., and Ray, C. E. (1985). Status of studies on fossil marine mammals.Mar. Mam. Sci. 1: 15–53.Google Scholar
  10. Beintema, J. J., and Lenstra, J. A. (1982). Evolution of mammalian pancreatic ribonucleases. In:Macromolecular Sequences in Systematics and Evolutionary Biology, M. Goodman, ed., pp. 43–73, Plenum Press, New York.Google Scholar
  11. Berta, A. (1994). What is a whale?Science 263: 180–181.Google Scholar
  12. Brunet, M., and Sudre, J. (1980). Deux nouveaux dichobunidés (Artiodactyla, Mammalia) de l'Oligocène inferieur d'Europe.Proc. Koninkl. Akad. Wetensch., Ser. B.83: 121–143.Google Scholar
  13. Bullock, T. H., Grinnell, A. D., Ikezono, E., Kameda, K., Katsuki, Y., Nomoto, M., Sato, O., Suga, N., and Yanagisawa, K. (1968). Electrophysiological studies of central auditory mechanisms in cetaceans.Z. f. vergl. Phys. 59: 117–156.Google Scholar
  14. Carpenter, K., and White, D. (1986). Feeding in the archaeocete whaleZygorhiza kochii (Cetacea: Archaeoceti).Mississippi Geol. 7: 1–14.Google Scholar
  15. Cifelli, R. L. (1983). The petrosal structure ofHyopsodus with respect to that of some other ungulates and its phylogenetic implications.J. Paleontol. 56: 795–805.Google Scholar
  16. Coombs, M. C., and Coombs, W. P. (1982). Anatomy of the ear region of four Eocene artiodactyls:Gobiohyus,? Helohyus, Diacodexis, andHomacodon.J. Vert. Paleont. 2: 219–236.Google Scholar
  17. Court, N. (1994). Limb posture and gait inNumidotherium koholense, a primitive proboscidean from the Eocene of Algeria.Zool. J. Linnean Soc. 111: 297–338.Google Scholar
  18. Czelusniak, J., Goodman, M., Koop, B. F., Tagle, D. A., Shoshani, J., Braunitzer, G., Kleinschimdt, T. K., de Jong, W. W., and Matsuda, G. (1990). Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of Eutheria. In:Current Mammalogy (Vol 2), H. H. Genoways, ed., pp. 545–572, Plenum Press, New York.Google Scholar
  19. Daudt, W. (1898). Beiträge zur Kenntnis des Urogenitalapparates der Cetaceen.Jenaischer Zeitschr. f. Naturwiss. 32: 231–312.Google Scholar
  20. Domning, D. P., and Buffrénil, V. de (1991). Hydrostasis in the Sirenia: Quantitative data and functional interpretations.Mar. Mam. Sci. 7: 331–368.Google Scholar
  21. Doran, A. H. G. (1978). Morphology of the mammalian ossicula auditus.Trans. Linnean Soc., London 1: 371–512.Google Scholar
  22. Douzery, E. (1993). Evolutionary relationships among Cetacea based on the sequence of the mitochondrial 12S rRNA gene: Possible paraphyly of toothed-whales (odontocetes) and long separate evolution of sperm whales (Physeteridae).C. R. Acad. Sc. Paris 316: 1511–1518.Google Scholar
  23. Eisenberg, J. F. (1981).The Mammalian Radiations, an Analysis of Trends in Evolution, Adaptation, and Behavior. University of Chicago Press, Chicago.Google Scholar
  24. Fischer, M. S. (1986). Die Stellung der Schliefer (Hyracoidea) im phylogenetischen System der Eutheria.Courier Forschungsinstitut Senckenberg 84: 1–132.Google Scholar
  25. Fischer, M. S. (1988). Hyracoids, the sister-group of perissodactyls. In:The Evolution of Perissodactyls, D. R. Prothero and R. M. Schoch, eds., pp. 37–56, Clarendon Press, New York.Google Scholar
  26. Fischer, M. S., and Tassy, P., (1993). The interrelation between Proboscidea, Sirenia, Hyracoidea, and Mesaxonia: The morphological evidence. In:Mammal Phylogeny, Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 217–234, Springer Verlag. New York.Google Scholar
  27. Fish, F. E., and Hui, C. A. (1991). Dolphin swimming—a review.Mammal Rev. 21: 181–195.Google Scholar
  28. Fleischer, G. (1976). Hearing in extinct cetaceans as determined by cochlear structure.J. Paleont. 50: 133–152.Google Scholar
  29. Fleischer, G. (1978). Evolutionary principles of the mammalian middle ear.Adv. Anat. Embryol. Cell Biol. 55(5): 1–70.Google Scholar
  30. Fordyce, R. E. (1980) Whale evolution and Oligocene southern ocean environments.Palaeogeog., Palaeoclim., Palaeoecol. 31: 319–336.Google Scholar
  31. Fordyce, R. E. (1992). Cetacean evolution and Eocene/Oligocene environments. In:Eocene-Oligocene Climatic and Biotic Evolution, D. R. Prothero and W. A. Berggren, eds., pp. 368–381. Princeton University Press, Princeton, NJ.Google Scholar
  32. Fordyce, R. E., and Barnes, L. G. (1994). The evolutionary history of whales and dolphins.Ann. Rev. Earth Planet. Sci. 22: 419–455.Google Scholar
  33. Fraser, F. C., and Purves, P. E. (1976). Anatomy and function of the cetacean ear.Proc. Roy. Soc. London 152: 62–78.Google Scholar
  34. Gambaryan, P. P. (1974).How Mammals Run, Anatomical Adaptations, Halsted Press, New York.Google Scholar
  35. Gauthier, J., Kluge, A. G., and Rowe, T. (1988). Amniote phylogeny and the importance of fossils.Cladistics 4: 105–209.Google Scholar
  36. Gazin, C. L. (1968). A study of the Eocene condylarthran mammalHyopsodus. Smiths. Misc. Coll. 153: 1–90.Google Scholar
  37. Gentry, A. W., and Hooker, J. J. (1988). The phylogeny of the Artiodactyla. In:The Phylogeny and Classification of the Tetrapods, Vol. 2, Mammals, M. J. Benton, ed., pp. 235–272, Clarendon, Oxford.Google Scholar
  38. Getty, R. (1975).Sisson and Grossman's the Anatomy of the Domestic Animals (5th Ed.). Saunders, Philadelphia.Google Scholar
  39. Gingerich, P. D. (1981). Radiation of early Cenozoic Didymoconidae (Condylarthra, Mesonychia) in Asia, with a new genus from the early Eocene of Western North America.J. Mammal. 62: 526–538.Google Scholar
  40. Gingerich, P. D. (1990). Forelimb and hand ofBasilosaurus isis (Mammalia, Cetacea) from the middle Eocene of Egypt.J. Vert. Paleont., Suppl. 10: 24A.Google Scholar
  41. Gingerich, P. D., and Russell, D. E. (1981).Pakicetus inachus, a new archaeocete (Mammalia, Cetacea) from the early-middle Eocene Kuldana Formation of Kohat (Pakistan).Contr. Mus. Paleont., Univ. Michigan 25: 235–246.Google Scholar
  42. Gingerich, P. D., and Russell, D. E. (1990). Dentition of early EocenePakicetus (Mammalia, Cetacea).Contr. Mus. Paleont. Univ. Michigan 28: 1–20.Google Scholar
  43. Gingerich, P. D., Wells, N. A., Russell, D. E., and Shah, S. M. I. (1983). Origin of whales in epicontinental remnant seas: New evidence from the early Eocene of Pakistan.Science 220: 403–406.Google Scholar
  44. Gingerich, P. D., Smith, B. H., and Simons, E. L. (1990). Hind limbs of EoceneBasilosaurus: Evidence of feet in whales.Science 249: 154–156.Google Scholar
  45. Gingerich, P. D., Raza, S. M., Arif, M., Anwar, M., and Zhou, X. (1993). Partial skeletons ofIndocetus ramani (Mammalia, Cetacea) from the lower middle Eocene Domanda Shale in the Sulaiman Range of Punjab (Pakistan).Contr. Mus. Pal., Univ. Michigan. 28: 393–416.Google Scholar
  46. Gingerich, P. D., Raza, S. M., Arif, M., Anwar, M., and Zhou, X. (1994). New whale from the Eocene of Pakistan and the origin of cetacean swimming.Nature 368: 844–847.Google Scholar
  47. Giraud-Saveur, D. (1969). Recherches biophysiques sur les osselets des cetacés.Mammalia 33: 285–340.Google Scholar
  48. Goodman, M., Weiss, M. L., and Czelusniak, J. (1982). Molecular evolution above the species level: Branching pattern, rates, and mechanisms.Syst. Zool. 31: 376–399.Google Scholar
  49. Goodman, M., Czelusniak, J., and Beeber, J. E. (1985). Phylogeny of primates and other eutherian orders: A cladistic analysis using amino acid and nucleotide sequence data.Cladistics 1: 178–185.Google Scholar
  50. Graur, D., and Higgins, D. G. (1994). Molecular evidence for the inclusion of cetaceans within the order Artiodactyla.Mol. Biol. Evol. 11: 357–364.PubMedGoogle Scholar
  51. Heyning, J. E. (1989). Comparative facial anatomy of beaked whales (Ziphiidae) and a systematic revision among the families of extant Odontoceti.Contr. Science, Los Angeles County Mus. 40: 1–64.Google Scholar
  52. Heyning, J. E., and Mead, J. G. (1990). Evolution of the nasal anatomy of cetaceans. In:Sensory Abilities of Cetaceans, N. J. Thomas and R. Kastelein eds., pp. 67–79. Plenum Press, New York.Google Scholar
  53. Hiiemae, K. M., and Crompton, A. W. (1985). Mastication, food transport, and swallowing. In:Functional Verrebrate Morphology, M. Hildebrand, D. M. Bramble, K. F. Liem, and D. B. Wake, eds., pp. 262–290, Belknap Press, Cambridge, MA.Google Scholar
  54. Honeycutt, R. L., and Adkins, R. M. (1993). Higher level systematics of eutherian mammals: An assessment of molecular characters and phylogenetic hypotheses.Ann. Rev. Ecol. Syst. 24: 279–305.Google Scholar
  55. Howell, A. B. (1944).Speed in Animals, Their Specializations for Running and Leaping, University of Chicago Press. Chicago, IL.Google Scholar
  56. Hulbert, R. C., Jr. (1992). Innominate of a middle Eocene (Lutetian) protocetid whale from Georgia.J. Vert. Paleont., Suppl. 11: 36A.Google Scholar
  57. Hulbert, R. C. Jr. (1993). Craniodental anatomy and systematics of a middle Eocene protocetid whale from Georgia.J. Vert. Paleont., Suppl. 13: 42A.Google Scholar
  58. Hulbert, R. C. Jr. (1994). Phylogenetic analysis of Eocene whales (“Archaeoceti”) with a diagnosis of a new North American protocetid genus.J. Vert. Paleont., Suppl. 14: 30A.Google Scholar
  59. Irwin, D. M., and Arnason, U. (1994). Cytochromeb gene of marine mammals: Phylogeny and evolution.J. Mamm. Evol. 2: 37–55.Google Scholar
  60. Irwin, D. M., and Wilson, A. C. (1993). Limitations of molecular methods for establishing the phylogeny of mammals, with special reference to the position of elephants. In:Mammal Phylogeny Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 257–267, Springer Verlag. New York.Google Scholar
  61. Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochromeb gene of mammals.J. Molec. Evol. 32: 128–144.PubMedGoogle Scholar
  62. Jenkins, F. A., Jr. (1974). The movement of the shoulder in claviculate and aclaviculate mammals.J. Morph. 144: 71–83.PubMedGoogle Scholar
  63. Jong, W. W., de (1985). Supraordinal affinities of Rodentia studied by sequence analysis of eye lens protein. In:Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, W. P. Luckett and J.-L. Hartenberger, eds., pp. 211–226. Plenum Press, New York.Google Scholar
  64. Jong, W. W., de Leunissen, J. A. M., and Wistow, G. J. (1993). Eye lens crystallins and the phylogeny of placental orders: Evidence for a macroscelid-paenungulate clade. In:Mammal Phylogeny, Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 5–12. Springer Verlag, New York.Google Scholar
  65. Kellogg, R. (1928). The history of whales—Their adaptation to life in the water.Quarterly Rev. Biol. 3: 29–76, 174–208.Google Scholar
  66. Kellogg, R. (1936).A review of the Archaeoceti. Carnegie Institute. Washington. Publ. No. 482: 1–366.Google Scholar
  67. Ketten, D. R. (1991). The marine mammal ear: specializations for aquatic audition and echolocation. In:The Biology of Hearing, D. Webster, R. Fay, and A. Popper, eds., pp. 717–750. Springer Verlag. Berlin.Google Scholar
  68. Ketten, D. R., (1992). The cetacean ear: Form, function and evolution. In:Marine Mammal Sensory Systems, J. Thomas et al., eds., pp. 53–75, Plenum Press, New York.Google Scholar
  69. Ketten, D. R., and Wartzok, D. (1990). Three-dimensional reconstructions of the dolphin ear. In:Sensory Abilities of Cetaceans, J. Thomas and R. Kastelein. eds. pp. 81–105, Plenum Press, New York.Google Scholar
  70. Koenigswald, W. v. (1983). Skelettfunde vonKopidodon (Condylarthra, Mammalia) aus dem mitteleozaenen Oelschiefer von Messel bei Darmstadt.Neus Jahrb. Geol. Palaeontol. Abh. 167: 1–39.Google Scholar
  71. Koenigswald, W. v., Rensberger, J. M., and Pfretzschner, H. U. (1987). Changes in the tooth enamel of early Paleogene mammals allowing increased diet diversity.Nature 328: 150–152.PubMedGoogle Scholar
  72. Krause, D. W., and Maas, M. C. (1990). The biogeographic origins of late Paleocene—early Eocene mammalian immigrants to the Western Interior of North America. In: Dawn of the age of mammals in the northern part of the Rocky Mountain Interior, North America. T. M. Bown and K. D. Rose, eds.,Geol. Soc. America. Spec. Pap. 243: 71–105.Google Scholar
  73. Krishtalka, L., and Stucky, R. K. (1985). Revision of the Wind River Faunas, early Eocene of central Wyoming (Part 7). Revision ofDiacodexis (Mammalia, Artiodactyla).Ann. Carnegie Museum 54: 413–486.Google Scholar
  74. Kumar, K., and Sahni, A. (1985). Eocene mammals from the upper Subathu Group Kashmir Himalaya, India.J. Vert. Paleont. 5: 153–168.Google Scholar
  75. Kumar, K., and Sahni, A. (1986).Remingtonocetus harudiensis, new combination, a middle Eocene archaeocete (Mammalia Cetacea) from western Kutch, India.J. Vert. Paleont. 6: 326–349.Google Scholar
  76. Lancaster, W. C. (1990). The middle ear of the Archaeoceti.J. Vert. Paleont. 10: 117–127.Google Scholar
  77. Luckett, W. P. (1993). Uses and limitations of mammalian fetal membranes and placenta for phylogenetic reconstruction.J. Exp. Zool. 266: 514–527.PubMedGoogle Scholar
  78. Luo, Z., and Eastman, E. R. (in press). Petrosal and inner ear of a squalodontoid whale: Implications for evolution of hearing in odontocetes.J. Vert. Palont.Google Scholar
  79. Maas, M. C., and Thewissen, J. G. M. (in press). Enamel microstructure ofPakicetus (Mammalia: Archaeoceti) and the phylogenetic relations of Cetacea.J. Paleont. Google Scholar
  80. MacPhee, R. D. E. (1994). Morphology, adaptations, and relationships ofPlesiorycteropus, and a diagnosis of a new order of eutherian mammals.Am. Mus. Nat. Hist., Bull. 220: 1–214.Google Scholar
  81. Massare, J. A. (1987). Tooth morphology and prey preference of Mesozoic marine reptiles.J. Vert. Paleont. 7: 121–137.Google Scholar
  82. Matthew, W. D. (1915). A revision of the lower Eocene Wasatch and Wind River Faunas. Part 1. Order Ferae (Carnivora); suborder Creodonta.Bull. Am. Mus. Nat. Hist.,34: 1–103.Google Scholar
  83. Matthew, W. D. (1937). Paleocene faunas of the San Juan Basin.Trans. Am. Phil. Soc., new ser. 30, 1–510.Google Scholar
  84. Matthew, W. D., and Granger, W. (1924). New Carnivora from the Tertiary of Mongolia.Am. Mus. Nov. 104: 1–9.Google Scholar
  85. McCormick, J. G., Wever, E. G., Palin, J., and Ridgway, S. H. (1970). Sound conduction in the dolphin ear.J. Acoust. Soc. Am. 48: 1418–1428.PubMedGoogle Scholar
  86. McCormick, J. G., Wever, E. G., Ridgway, S. H., and Palin, J. (1980). Sound reception in the porpoise as it relates to echolocation. In:Animal Sonar Systems, R.-G. Busnel and J. F. Fish, eds., pp. 449–467. Plenum Press, New York.Google Scholar
  87. McKenna, M. C. (1975). Toward a phylogenetic classification of the Mammalia. In:Phylogeny of the Primates: A Multidisciplinary Approach, W. P., Luckett and F. S. Szalay, eds., pp. 21–46. Plenum Press, New York.Google Scholar
  88. Milinkovitch, M. C. (1992). DNA-DNA hybridizations support ungulate ancestry of Cetacea.J. Evol. Biol. 5: 149–160.Google Scholar
  89. Milinkovitch, M. C., Orti, G., and Meyer, A. (1993). Revised phylogeny of whales suggested by mitochondrial ribosomal DNA sequences.Nature 361: 346–348.PubMedGoogle Scholar
  90. Milinkovitch, M. C., Meyer, A., Powell, J. R. (1994). Phylogeny of all major groups of cetaceans based on DNA sequences from three mitochondrial genes.Mol. Biol. Evol. 11: 939–948.PubMedGoogle Scholar
  91. Miyamoto, M. M., and Goodman, M. (1986). Biomolecular systematics of eutherian mammals: Phylogenetic patterns and classification.Syst. Zool. 35: 230–240.Google Scholar
  92. Moore, P. W. B., and Schusterman, R. J. (1987). Audiometric assessment of Northern Fur Seals.Callorhinus ursinus. Mar. Mam. Sci. 3: 31–53.Google Scholar
  93. Mossman, H. W. (1987).Vertebrate Fetal Membranes: Comparative Ontogeny and Morphology, Evolution, Phylogenetic Significance, Basic Functions, Research Opportunities. Rutgers Univ. Press, New Brunswick, NJ.Google Scholar
  94. Muizon, C. de (1991). A new Ziphiidae (Cetacea) from the early Miocene of Washington State (USA) and phylogenetic analysis of the major groups of odontocetes.Bull. Mus. Nat. d'Hist. Nat., Ser. C 12: 279–326.Google Scholar
  95. Norris, K. S. (1980). Peripheral sound processing in odontocetes In:Animal Sonar Systems, R.-G. Busnel and J. F. Fish, eds., pp. 495–509, Plenum Press, New York.Google Scholar
  96. Novacek, M. J. (1992). Fossils, topologies, missing data, and the higher phylogeny of eutherian mammals.Syst. Biol. 41: 53–73.Google Scholar
  97. Novacek, M. J. (1993a). Genes tell a new whale tale.Nature 361: 298–299.PubMedGoogle Scholar
  98. Novaeck, M. J. (1993b). Reflections on higher mammalian phylogenetics.J. Mamm. Evol. 1: 3–30.Google Scholar
  99. Novacek, M. J. (1994). Whales leave the beach.Nature,368: 807.Google Scholar
  100. Novacek, M. J., and Wyss, A. R. (1986). Higher-level relationships of the recent eutherian orders: Morphological evidence.Cladistics 2: 257–287.Google Scholar
  101. Oelschläger, H. A. (1986). Comparative morphology and evolution of the otic region in toothed whales (Cetacea. Mammalia).Am. J. Anat. 177: 353–368.PubMedGoogle Scholar
  102. Oelschläger, H. A., (1987).Pakicetus inachus and the origin of whales and dolphins (Mammalia: Cetacea).Gegenbraus Morph. Jahrb. 133: 673–685.Google Scholar
  103. Oelschläger, H. A. (1990). Evolutionary morphology and acoustics in the dolphin skull. In:Sensory Abilities of Cetaceans, J. Thomas, and R. Kastelein, eds. pp. 137–162. Plenum Press, New York.Google Scholar
  104. O'Leary, M. A., and Rose, K. D. (in press a). New mesonychian dentitions from the Paleocene and Eocene of the Bighorn Basin, Wyoming.Ann. Carnegie Mus. Nat. Hist. Google Scholar
  105. O'Leary, M. A., and Rose, K. D. (in press b). Postcranial skeleton of the early Eocene mesonychidPachyaena (Mammalia, Mesonychia).J. Vert. Paleont. Google Scholar
  106. O'Leary, M. A., and Teaford, M. F. (1992). Dental microwear and diet of mesonychids.J. Vert. Paleont., Suppl. 12: 45A.Google Scholar
  107. Osborn, H. F. (1924).Andrewsarchus, giant mesonychid of Mongolia.Am. Mus. Nov. 146: 1–5.Google Scholar
  108. Osborn, H. F., and Earle, C. (1895). Fossil mammals of the Puerco Beds. Collection of 1892.Bull. Am. Mus. Nat. Hist. 7: 1–70.Google Scholar
  109. Pilleri, G., Gihr, M., and Kraus, C. (1986). Evolution of the echolocation system in cetaceans, a contribution to paleoacoustics.Invest. Cetacea 18: 14–104.Google Scholar
  110. Pompeckj, J. F. (1922). Das Ohrskelett vonZeuglodon.Senckenbergiana (Frankfurt)4: 43–100.Google Scholar
  111. Prothero, D. R. (1993). Ungulate phylogeny: Molecular vs. morphological evidence. In:Mammal Phylogeny. Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 173–181, Springer Verlag, New York.Google Scholar
  112. Prothero, D. R., Manning, E. M., and Fischer, M. (1988). The phylogeny of ungulates. In:The Phylogeny and Classification of the Tetrapods, Volume 2, Mammals, M. J. Benton, ed., Clarendon Press, Oxford.Google Scholar
  113. Purves, P. E. (1966). Anatomy and physiology of the outer and middle ear in cetaceans. In:Whales, Dolphins, and Porpoises, K. S. Norris, ed., pp. 320–376. Univ. of California Press, Berkeley, CA.Google Scholar
  114. Radinsky, L. B. (1965). Evolution of the tapiroid skeleton fromHeptodon toTapirus.Bull. Mus. Comp. Zool. 134: 69–106.Google Scholar
  115. Ranga Rao, A. (1973). Notices on two new mammals from the upper Eocene Kalakot Beds, India.Directorate Geol. Oil & Nat. Gas Comm., Dehra Dun. India, Sp. Pap. 2: 1–6.Google Scholar
  116. Repenning, C. A. (1972). Underwater hearing in seals: Functional morphology. In:Functional Anatomy of Marine Mammals, R. J. Harrison, ed., pp. 307–331. Academic Press, London.Google Scholar
  117. Reysenbach de Haan, F. W. (1957). Hearing in whales.Acta Otolaryngol., Suppl. 134: 1–114.Google Scholar
  118. Richter, G. (1987). Untersuchungen zur Ernahrung eozäner Säuger aus der Fossilfundstatte Messel bei Darmstadt. In: Forschungsergebnisse zur Grabungen in der Grube Messel bei Darmstadt, S. Schaal, ed.,Courier Forschungsinstitut Senckenberg 91: 1–34.Google Scholar
  119. Rose, K. D. (1982). Skeleton ofDiacodexis, oldest known artiodactyl.Science 216: 621–623.Google Scholar
  120. Rose, K. D. (1985). Comparative osteology of North American dichobunid artiodactyls.J. Paleontol. 59: 1203–1226.Google Scholar
  121. Rose, K. D. (1990). Postcranial skeletal remains and adaptaions in early Eocene mammals from the Willwood Formation, Bighorn Basin. In: Dawn of the age of mammals in the northern part of the Rocky Mountain Interior. North America, T. M. Bown and K. D. Rose, eds.,Geol. Soc. America, Sp. Pap. 243: 107–134.Google Scholar
  122. Rose, K. D., and O'Leary, M. A. (in press). The manus ofPachyaena (Mammalia, Mesonychia).J. Vert. Paleont.Google Scholar
  123. Russell, D. E. (1964). Les mammiferes paleocènes d'Europe.Mém. Mus. Natl. d'Hist. Nat. Ser. C 13: 1–324.Google Scholar
  124. Russell, D. E., and Zhai, R.-J. (1987). The Paleogene of Asia: Mammals and stratigraphy.Mem. Mus. Nat. d'Hist. Nat., Ser. C 52: 1–488.Google Scholar
  125. Russell, D. E., Thewissen, J. G. M., and Sigogneau-Russell, D. (1983). A new dichobunid artiodactyl (Mammalia) from the Eocene of North-West Pakistan. Part II. Cranial osteology.Proc. Koninkl. Nederlandse Akad. Wetensch., Ser. A 86: 285–300.Google Scholar
  126. Sahni, A. (1981). Enamel ultrastructure of fossil Mammalia: Eocene Archaeoceti from Kutch.J. Palaeont. Soc. India 25: 33–37.Google Scholar
  127. Sahni, A., and Mishra, V. P. (1975). Lower Tertiary vertebrates from western Kutch.Monogr. Paleont. Soc. India 3: 1–48.Google Scholar
  128. Schaeffer, B. (1947). Notes on the origin and function of the artiodactyl tarsus.Am. Mus. Nov. 1356: 1–24.Google Scholar
  129. Scott, W. B. (1888). On some new and little known creodonts.J. Acad. Nat. Sci. Philadelphia 9: 155–185.Google Scholar
  130. Shoshani, J. (1986). Mammalian phylogeny: Comparison of morphological and molecular results.Molec. Biol. Evol. 3: 222–242.PubMedGoogle Scholar
  131. Shoshani, J. (1993). Hyracoidea—Tethytheria affinity based on myological data. In:Mammal Phylogeny, Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 235–256, Springer Verlag, New York.Google Scholar
  132. Simpson, G. G. (1945). The principles of classification and a classification of mammals.Am. Mus. Nat. Hist., Bull. 85: 1–350.Google Scholar
  133. Slijper, E. J. (1962).Whales (2nd. Ed.), Cornell University Press.Google Scholar
  134. Spoor, C. F., and Badoux, D. M. (1986). Nomenclatural review of long digital forelimb flexors in carnivores.Anat. Rec. 216: 471–473.PubMedGoogle Scholar
  135. Struthers, J. (1893). On the rudimentary hind-limb of a great fin-whale (Balaenoptera musculus) in comparison with those of the humpback whale and the Greenland right whale.J. Anat. Physiol. 27: 291–335.Google Scholar
  136. Sudre, J., Russell, D. E., Louis, P., and Savage, D. E. (1983). Les artiodactyles de l'Eocène inferieur d'Europe.Bull. Mus. Nat. d'Hist. Nat., Ser. C 5: 281–333, 339–365.Google Scholar
  137. Swofford, D. L. (1989).PAUP: Phylogenetic Analysis Using Parsimony, Version 3. 1, Illinois Natural History Survey, Champaign, IL.Google Scholar
  138. Szalay, F. S. (1969a). Origin and function of the mesonychid condylarth feeding mechanism.Evolution 23: 703–720.Google Scholar
  139. Szalay, F. S. (1969b). The Hapalodectinae and a phylogeny of the Mesonychidae (Mammalia, Condylarthra).Am. Mus. Nov. 2361: 1–26.Google Scholar
  140. Szalay, F. S., and Gould, S. J. (1966). Asiatic Mesonychidae (Mammalia, Condylarthra).Am. Mus. Nat. Hist., Bull. 132: 129–173.Google Scholar
  141. Thewissen, J. G. M. (1990). Evolution of Paleocene and Eocene Phenacodontidae (Mammalia, Condylarthra).Pap. Paleont., Univ. Michigan 29: 1–107.Google Scholar
  142. Thewissen, J. G. M. (1991). Limb osteology and function of the primitive Paleocene ungulatePleuraspidotherium, with notes onTricuspiodon andDissacus (Mammalia).Geobios (Lyon)34: 483–495.Google Scholar
  143. Thewissen, J. G. M., and Domning, D. P. (1992). The role of phenacodontids in the origin of the modern orders of ungulate mammals.J. Vert. Paleont. 12: 494–504.Google Scholar
  144. Thewissen, J. G. M., and Hussain, S. T. (1990). Postcranial osteology of the most primitive artiodactyl,Diacodexis pakistanensis (Dichobunidae).Anat., Hist., Embryol. (Berlin) 19: 37–48.Google Scholar
  145. Thewissen, J. G. M., and Hussain, S. T. (1993). Origin of underwater hearing in whales.Nature 361: 444–445.PubMedGoogle Scholar
  146. Thewissen, J. G. M., and McKenna, M. C. (1992). Paleobiogeography of Indo-Pakistan: A response to Briggs, Patterson, and Owen.Syst. Biol. 41: 248–251.Google Scholar
  147. Thewissen, J. G. M., Russell, D. E., Gingerich, P. D., and Hussain, S. T. (1983). A new artiodactyl (Mammalia) from the Eocene of North-West Pakistan. Dentition and classification.Proc. Koninkl. Nederlandse Akad. Wetensch., Ser. B,86: 153–180.Google Scholar
  148. Thewissen, J. G. M., Gingerich, P. D., and Russell, D. E. (1987). Artiodactyla and Perissodactyla (Mammlia) from the early-middle Eocene Kuldana Formation of Kohat (Pakistan).Contrib. Mus. Paleont., Univ. Michigan 27: 247–274.Google Scholar
  149. Thewissen, J. G. M., Hussain, S. T., and Arif, M. (1994). Fossil evidence of the origin of aquatic locomotion in archaeocete whales.Science 263: 210–212.Google Scholar
  150. Ting, S., and Li, C. (1987). The skull ofHapalodectes (?Acreodi, Mammalia), with notes on some Chinese Paleocene mesonychids.Vert. PalAsiat. 25: 161–186.Google Scholar
  151. Van Valen, L. (1966). Deltatheridia, a new order of mammals.Am. Mus. Nat. Hist., Bull. 132: 1–126.Google Scholar
  152. Van Valen, L. (1978). The beginning of the age of mammals.Evol. Theory 4: 45–80.Google Scholar
  153. Wells, N. A., and Gingerich, P. D. (1987). Paleoenvironmental interpretation of Paleogene strata near Kotli, Azad Kashmir, northeastern Pakistan.Kashmir J. Geol. 5: 23–41.Google Scholar
  154. West, R. M. (1980). Middle Eocene large mammal assemblage with tethyan affinities, Ganda Kas region, Pakistan.J. Paleont. 54: 508–533.Google Scholar
  155. West, R. M. (1981). Geology and paleontology of the Bridger Formation, Southern Green River Basin, Southwestern Wyoming. Part 5.Harpagolestes macrocephalus and comments on structure, function and diversity of middle Eocene to early Oligocene large mesonychids.Contrib. Biol. Geol., Milwaukee Publ. Mus. 43: 1–17.Google Scholar
  156. Wible, J. R. (1987). The eutherian stapedial artery: Character analysis and implications for superordinal relationships.Zool. J. Linn. Soc. 91: 107–135.Google Scholar
  157. Williamson, T. E., and Lucas, S. g. (1992).Meniscotherium (Mammalia, “Condylarthra”) from the Paleocene-Eocene of Western North America.New Mexico Mus. Nat. Hist. Sci., Bull. 1: 1–75.Google Scholar
  158. Wyss, A. R. (1987). The walrus auditory region and the monophyly of pinnipeds.Am. Mus. Nov. 2871: 1–31.Google Scholar
  159. Zhou, X. (1995). Evolution of Paleocene-Eocene Mesonychidae (Mammalia, Mesonychia). PhD Thesis, University of Michigan, Ann Arbor.Google Scholar
  160. Zhou, X., and Gingerich, P. D. (1991). New species ofHapalodectes (Mammalia, Mesonychia) from the early Wasatchian, Early Eocene, of northeastem Wyoming.Contr. Mus. Paleont., Univ. Michigan 28: 215–220.Google Scholar
  161. Zhou, X., Sanders, W. J., and Gingerich, P. D. (1992). Functional and behavioral implications of vertebral structure inPachyaena ossifraga (Mammalia, Mesonychia).Contr. Mus. Paleont., Univ. Michigan 28: 289–319.Google Scholar
  162. Zhou, X., Zhai, R., Gingerich, P. D., and Chen, L. (in press). Skull of a new mesonychid (Mammalia, Mesonychia) from the late Paleocene of China.J. Vert. Paleont. Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • J. G. M. Thewissen
    • 1
  1. 1.Department of AnatomyNortheastern Ohio Universities College of MedicineRootstown

Personalised recommendations