Advertisement

Mathematische Annalen

, Volume 146, Issue 3, pp 195–216 | Cite as

The Levi problem for complex spaces II

  • Raghavan Narasimhan
Article

Keywords

Complex Space Levi Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Andreotti, A., andH. Grauert: Forthcoming paper on cohomological codimension andq-convex spaces; see the announcement byH. Grauert in Topologie algébrique et géométrie différentielle, Bull. soc. math. France87, 341–350 (1959).Google Scholar
  2. [2]
    Behnke, H., u.K. Stein: Approximation analytischer Funktionen in vorgegebenen Gebieten des Raumes vonn komplexen Veränderlichen, Nachr. Ges. der Wissenschaften zu Göttingen1, 15 (1939).Google Scholar
  3. [3]
    Cartan, H.: Quotients of complex analytic spaces, in Contributions to Function Theory, report of an International Colloquium, Tata Institute of Fundamental Research, Bombay, 1960, 1–15.Google Scholar
  4. [4]
    Cartan, H., etJ. P. Serre: Un théorème de finitude concernant les variétés analytiques compactes. Compt. rend. Acad. Sci. (Paris)237, 128–130 (1953); see alsoH. Cartan, Un théorème de finitude, Exposé XVII in Sém.H. Cartan, E.N.S., 1953/54.Google Scholar
  5. [5]
    Docquier, F., u.H. Grauert: Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten. Math. Ann.140, 94–123 (1960).Google Scholar
  6. [6]
    Grauert, H.: On Levi's problem and the imbedding of real analytic manifolds. Ann. Math.68, 460–472 (1958).Google Scholar
  7. [7]
    Grauert, H.: Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen. Publications mathématiques, Institut des Hautes Études Scientifiques, Paris, 1960, No. 5.Google Scholar
  8. [8]
    Grauert, H., u.R. Remmert: Zur Theorie der Modifikationen. Math. Ann.129, 274–296 (1955).Google Scholar
  9. [9]
    Narasimhan, R.: The Levi Problem for complex spaces. Math. Ann.142, 355–365 (1961).Google Scholar
  10. [10]
    Narasimhan, R.: Imbedding of holomorphically complete complex spaces. Am. J. Math.82, 917–934 (1960).Google Scholar
  11. [11]
    Norguet, F.: Problème de Levi et plongement des variétés analytiques réelles, Sém. Bourbaki, Exposé173 (1958/59).Google Scholar
  12. [12]
    Oka, K.: Sur les fonctions analytiques des plusieurs variables. IX. Domaines finis sans points critiques intérieur, Japan. J. Math.23, 97–155 (1953).Google Scholar
  13. [13]
    Remmert, R.: Holomorphe and meromorphe Abbildungen komplexer Räume. Math. Ann.133, 328–370 (1957).Google Scholar
  14. [14]
    Remmert, R.: Reduction of complex spaces, in Seminars on Analytic Functions, Princeton, 1957, Vol. I, 190–205.Google Scholar
  15. [15]
    Stein, K.: Überlagerung holomorph-vollständiger komplexer Räume. Arch. Math.7, 354–361 (1956).Google Scholar

Copyright information

© Springer-Verlag 1962

Authors and Affiliations

  • Raghavan Narasimhan
    • 1
  1. 1.Bombay

Personalised recommendations