Zeitschrift für Physik B Condensed Matter

, Volume 50, Issue 4, pp 311–336 | Cite as

On a classical spin glass model

  • J. L. van Hemmen
  • A. C. D. van Enter
  • J. Canisius


A simple, exactly soluble, model of a spin-glass with weakly correlated disorder is presented. It includes both randomness and frustration, but its solution can be obtained without replicas. As the temperatureT is lowered, the spin-glass phase is reached via an equilibrium phase transition atT=T f . The spin-glass magnetization exhibits a distinctS-shape character, which is indicative of a field-induced transition to a state of higher magnetization above a certain threshold field.

For suitable probability distributions of the exchange interactions.
  1. (a)

    A mixed phase is found where spin-glass and ferromagnetism coexist.

  2. (b)

    The zero-field susceptibility has a flat plateau for 0≦TT f and a Curie-Weiss behaviour forT>T f .

  3. (c)

    At low temperatures the magnetic specific heat is linearly dependent on the temperature.


The physical origin of the dependence upon the probability distributions is explained, and a careful analysis of the ground state structure is given.


Spin Glass Mixed Phase Physical Origin Ground State Structure High Magnetization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cannella, V., Mydosh, J.A.: Phys. Rev. B6, 4220 (1972); A.I.P. Conf. Proc.18, 651 (1974)CrossRefGoogle Scholar
  2. 2.
    Mydosh, J.A.: In: Springer Lecture Notes in Physics. Vol. 149, p. 87. Berlin, Heidelberg, New York: Springer 1981Google Scholar
  3. 3.
    Malozemoff, A.P., Imry, Y.: Phys. Rev. B24, 489 (1981)CrossRefGoogle Scholar
  4. 4.
    Monod, P., Bouchiat, H.: In: Springer Lecture Notes in Physics. Vol. 149, p. 118. Berlin, Heidelberg, New York: Springer 1981; J. Phys. (Paris)43, L45 (1982)Google Scholar
  5. 5.
    Hemmen, J.L. van: Phys. Rev. Lett.49, 409 (1982)CrossRefGoogle Scholar
  6. 6a.
    Owen, J., Browne, M.E., Knight, W.D., Kittel, C.: Phys. Rev.102, 1501 (1956)CrossRefGoogle Scholar
  7. 6b.
    Owen, J., Browne, M.E., Arp, V., Kip, A.F.: J. Phys. Chem. Solids2, 85 (1957)CrossRefGoogle Scholar
  8. 7.
    Morgownik, A.F.J., Mydosh, J.A.: Physica107B, 305 (1981); Phys. Rev. B24, 5277 (1981)Google Scholar
  9. 8.
    Nagata, S., Keesom, P.H., Harrison, H.R.: Phys. Rev. B19, 1633 (1979)CrossRefGoogle Scholar
  10. 9.
    Mulder, C.A.M., Duyneveldt, A.J. van, Mydosh, J.A.: Phys. Rev. B23, 1384 (1981)CrossRefGoogle Scholar
  11. 10.
    Knitter, R.W., Kouvel, J.S.: J. Magn. Magn. Mater.21, L 316 (1980)CrossRefGoogle Scholar
  12. 11a.
    Schwink, Ch., Schulze, U.: J. Magn. Magn. Mater.9, 31 (1978)CrossRefGoogle Scholar
  13. 11b.
    Emmerich, K., Schwink, Ch.: Solid State Commun.31, 705 (1979)CrossRefGoogle Scholar
  14. 12a.
    Ruderman, M.A., Kittel, C.: Phys. Rev.96, 99 (1954)CrossRefGoogle Scholar
  15. 12b.
    Kasuya, T.: Prog. Theor. Phys.16, 45 (1956)Google Scholar
  16. 12c.
    Yosida, K.: Phys. Rev.106, 893 (1957)CrossRefGoogle Scholar
  17. 13.
    Walstedt, R.W., Walker, L.R.: Phys. Rev. Lett.47, 1624 (1981)CrossRefGoogle Scholar
  18. 14.
    Edwards, S.F., Anderson, P.W.: J. Phys. F5, 965 (1975)CrossRefGoogle Scholar
  19. 15a.
    Morgenstern, I., Horner, H.: Phys. Rev. B25, 504 (1982)CrossRefGoogle Scholar
  20. 15b.
    Hemmen, J.L. van, Morgenstern, I.: J. Phys. C15, 4353 (1982)Google Scholar
  21. 16a.
    Lanford, O.E., Ruelle, D.: Commun. Math. Phys.13, 194 (1969)Google Scholar
  22. 16b.
    Penrose, O., Lebowitz, J.L.: In: Fluctuation phenomena. Montroll, E.W., Lebowitz, J.L. (eds), Chap. 5. Amsterdam: North-Holland 1979Google Scholar
  23. 16c.
    Sewell, G.L.: Phys. Rep.57, 307 (1980)CrossRefGoogle Scholar
  24. 17a.
    Sherrington, D., Kirkpatrick, S.: Phys. Rev. Lett.35, 1792 (1975) referred to as SKCrossRefGoogle Scholar
  25. 17b.
    Kirkpatrick, S., Sherrington, D.: Phys. Rev. B17, 4384 (1978)CrossRefGoogle Scholar
  26. 18a.
    Thouless, D.J., Anderson, P.W., Palmer, R.G.: Philos. Mag.35, 593 (1977) referred to as TAPGoogle Scholar
  27. 18b.
    Almeida, J.R.L. de, Thouless, D.J.: J. Phys. A: Math. Gen.11, 983 (1978)CrossRefGoogle Scholar
  28. 18c.
    Sommers, H.J.: Z. Phys. B-Condensed Matter31, 301 (1978);33, 173 (1979)Google Scholar
  29. 18d.
    Parisi, G.: J.-Phys. A: Math. Gen.13, L 115 (1980)CrossRefGoogle Scholar
  30. 18e.
    Toulouse, G., Gabay, M.: J. Phys. (Paris)42, L 103 (1981)Google Scholar
  31. 18f.
    Gabay, M.: Ph.D. Thesis, Orsay 1981Google Scholar
  32. 18g.
    Sompolinsky, H.: Phys. Rev. Lett.47, 935 (1981)CrossRefGoogle Scholar
  33. 18h.
    For a review see G. Toulouse, “Frustrations et désordres: problèmes nouveaux en mécanique statistique. Histoire des verres de spin”, Meeting, Clermont-Ferrand (1981) J. Phys. (Paris) (to be published)Google Scholar
  34. 19.
    Toulouse, G.: Commun. Phys.2, 115 (1977)Google Scholar
  35. 20.
    Kirkpatrick, S.: Phys. Rev. B16, 4630 (1977)CrossRefGoogle Scholar
  36. 21.
    Binder, K., Schröder, K.: Phys. Rev. B14, 2142 (1976) in part. their Fig. 1CrossRefGoogle Scholar
  37. 22.
    Springer, M.D.: The algebra of random variables. New York: Wiley 1979Google Scholar
  38. 23.
    Lamperti, J.: Probability. Sect. 14. New York: Benjamin 1966Google Scholar
  39. 24.
    Luttinger, J.M.: Phys. Rev. Lett.37, 778 (1976)CrossRefGoogle Scholar
  40. 25.
    Kubo, R.: J. Phys. Soc. Jpn.17, 1100 (1962)Google Scholar
  41. 26.
    Anderson, P.W.: Rev. Mod. Phys.50, 199 (1978)CrossRefGoogle Scholar
  42. 27.
    Huang, K.: Statistical mechanics. Sect. 8.2. New York: Wiley 1963Google Scholar
  43. 28.
    Bruijn, N.G. de: Asymptotic methods in analysis. 2nd Edn., Sect. 4.2. Amsterdam: North-Holland 1961Google Scholar
  44. 29.
    Using the strong law of large numbers (Ref. 23, Sect. 7) or the ergodic theoremGoogle Scholar
  45. 30a.
    Cramér, H.: Act. Sci. Ind., Vol. 736, pp. 5–23. Paris: Hermann 1938Google Scholar
  46. 30b.
    Chernoff, H.: Ann. Math. Stat.23, 493 (1952)Google Scholar
  47. 31.
    Roberts, A.W., Varberg, D.E.: Convex functions, pp. 30 and 110. New York: Academic Press 1973Google Scholar
  48. 32.
    Varadhan, S.R.S.: Commun. Pure Appl. Math.19, 261 (1966) in part. Theorem 3.4Google Scholar
  49. 33.
    Kac, M.: In: Statistical physics, phase transitions and superfluidity. Chrétien, M., Gross, E.P., Deser, S. (eds.), Vol. 1, pp. 248–249. New York: Gordon and Breach 1968. See also Stanley, H.E.: Introduction to phase transitions and critical phenomena. Sect. 6.5. Oxford: Oxford University Press 1971Google Scholar
  50. 34.
    Donsker, M.D., Varadhan, S.R.S.: Phys. Rep.77, 235 (1981) and references quoted therein. Additional information may be found in Ref.32. See also R.S. Ellis, Large deviations and other limit theorems for a class of dependent random variables with applications to statistical mechanics, Z. Wahrscheinlichkeitstheorie (submitted for publication)CrossRefGoogle Scholar
  51. 35.
    Ref. 22, Sect. 15Google Scholar
  52. 36a.
    Bray, A.J., Moore, M.A.: J. Phys. C13, L469 (1980)Google Scholar
  53. 36b.
    Young, A.P.: J. Phys. C14, L 1085 (1981)Google Scholar
  54. 37.
    Mattis, D.C.: Phys. Lett.56 A, 421 (1976)Google Scholar
  55. 38.
    If one scales by 1/2N instead ofN and replacesK by βJ 0 one just gets (3.13). Hence the transition atK=1; it is second orderGoogle Scholar
  56. 39.
    Scaling by 1/2N instead ofN in theJ 0-term leaves us with an extra factor 1/2 so that the ferromagnetic transition itself would occur at 1/2βJ 0=1. Note this transition is second order tooGoogle Scholar
  57. 40.
    Schulze, U., Felten, G., Schwink, Ch.: J. Magn. Magn. Mater.15–18, 205 (1980) in part. Fig. 1CrossRefGoogle Scholar
  58. 41.
    Crane, S., Claus, H.: Phys. Rev. Lett.46, 1693 (1981)CrossRefGoogle Scholar
  59. 42.a
    Landau, L.D., Lifshitz, E.M.: Statistical physics. 2nd. Edn., pp. 478–479. Oxford: Pergamon Press 1969Google Scholar
  60. 42.b
    Simon, B., Sokal, A.D.: J. Stat. Phys.25, 679 (1981)CrossRefGoogle Scholar
  61. 43.a
    Ref. 31, Theorem 15.D and problem 43.DGoogle Scholar
  62. 43.b
    Fenchel, W.: Can. J. Math.1, 73 (1949)Google Scholar
  63. 44.
    Eisele, Th., Ellis, R.S.: Symmetry breaking and random waves for magnetic systems on a circle. Preprint, Heidelberg, 1981, Appendix CGoogle Scholar
  64. 45.a
    See also a recent discussion in Phys. Rev. Lett.: Gullikson, E.M., Schultz, S.: Phys. Rev. Lett.49, 238 (1982)CrossRefGoogle Scholar
  65. 45.b
    Wenger, L.E., Mydosh, J.A.: ibid.49, p. 239 (1982)CrossRefGoogle Scholar
  66. 45.c
    Fogle, W.E., Boyer, J.D., Phillips, N.E., Curen, J. Van: ibid.49, p. 241 (1982)CrossRefGoogle Scholar
  67. 46.
    Larsen, U.: Phys. Rev. B18, 5014 (1978)CrossRefGoogle Scholar
  68. 47.
    Ref. 31——, 110, and 115 New York: Academic Press 1973Google Scholar
  69. 48.
    Ref. 31—— and Theorem 51.E New York: Academic Press 1973Google Scholar
  70. 49.a
    Chung, K.L.: Elementary probability theory with stochastic processes. 2nd Edn., Sect. 7.3. Berlin, Heidelberg, New York: Springer-Verlag 1975Google Scholar
  71. 49.b
    Feller, W.: An introduction to probability theory and its applications. Vol. I, 3rd Edn., Sect. VII.3. New York: Wiley 1970Google Scholar
  72. 50.
    Ref. 31——, Theorem 42.F New York: Academic Press 1973Google Scholar
  73. 51.
    Iooss, G., Joseph, D.D.: Elementary stability and bifurcation theory. Berlin, Heidelberg, New York: Springer-Verlag 1980Google Scholar
  74. 52.
    Eisele, Th., Enter, A.C.D. van, Hemmen, J.L. van: (Manuscript in preparation)Google Scholar
  75. 53.
    See, for instance, Verbeek, B.H., Nieuwenhuys, G.J., Stocker, H., Mydosh, J.A.: Phys. Rev. Lett.40, 586 (1978)CrossRefGoogle Scholar
  76. 54.
    Shell, J., Cowen, J.A., Foiles, C.L.: Phys. Rev. B25, 6015 (1982)CrossRefGoogle Scholar
  77. 55.
    Anderson, P.W., Halperin, B.I., Varma, C.M.: Philos. Mag.25, 1 (1972)Google Scholar
  78. 56.
    Wenger, L.E., Keesom, P.H.: Phys. Rev. B13, 4053 (1976)CrossRefGoogle Scholar
  79. 57.
    See also Joffrin, J.: In: Ill-condensed matter, Les Houches 1978. Balian, R., Maynard, R., Toulouse, G. (eds.), Sects. 1.1 and 1.2. Amsterdam: North-Holland 1979Google Scholar
  80. 58.
    Binder, K.: In: Fundamental problems in statistical mechanics. Cohen, E.G.D. (ed.), Vol. V, pp. 21–51. Amsterdam: North-Holland 1980Google Scholar
  81. 59.
    Soukoulis, C.M., Levin, K., Grest, G.S.: Phys. Rev. Lett.48, 1756 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • J. L. van Hemmen
    • 1
  • A. C. D. van Enter
    • 1
  • J. Canisius
    • 1
  1. 1.Sonderforschungsbereich 123Universität HeidelbergHeidelberg 1Germany

Personalised recommendations