Klinische Wochenschrift

, Volume 52, Issue 24, pp 1158–1164 | Cite as

Protein size and cerebrospinal fluid composition

  • K. Felgenhauer
Originalien

Summary

The concentration ratios of several proteins between serum and cerebrospinal fluid (CSF) can be correlated more easily to hydrodynamic volumes than to molweights. Hydrodynamic radii were calculated from literature diffusion data and determined by analytical column chromatography and gel electrophoresis. Discrepancies between molweight and hydrodynamic volume become evident, especially with the high-molecular proteins because of stronger conformational variability in this size range. The permeability of the blood-CSF-barrier is compared to the blood-lymph-barrier and the results are discussed with reference to current views about capillary permeability. The basement membrane, exposed to the capillary lumen by endothelial fenestrations is considered the most likely site of protein passage at the blood-CSF-barrier.

Key words

Blood-brain-barrier capillary permeability cerebrospinal fluid electrophoresis polyacrylamide gel gel filtration immunoassay protein conformation 

Molekülgröße der Serumproteine und Zusammensetzung des Liquor cerebrospinalis

Zusammenfassung

Die Konzentrations-Quotienten zahlreicher Proteine zwischen Serum und Liquor cerebrospinalis korrelieren besser mit den hydrodynamischen Volumen als mit den Molekulargewichten. Die hydrodynamischen Radien wurden der Literatur entnommen, sowie mit Hilfe der analytischen Säulenchromatographie und Gelelektrophorese bestimmt. Diskrepanzen zwischen Molekulargewicht und hydrodynamischem Volumen werden vorwiegend bei den großmolekularen Proteinen gefunden, da hier die Molekülformen stärker variieren. Die Permeabilität der Blut-Liquor-Schranke wird mit der Blut-Lymph-Schranke verglichen, und die Daten werden unter dem Aspekt der derzeitigen Filtrationstheorien diskutiert. Die Basalmembran, die durch Endothelfenster direkten Kontakt mit dem Kapillarlumen erhält, ist der wahrscheinlichste Ort für den Proteindurchtritt an der Blut-Liquor-Schranke.

Schlüsselwörter

Bluthirnschranke Kapillarpermeabilität Liquor cerebrospinalis Polyacrylamidgel-Elektrophorese Gelfiltration Immunnachweise Proteinkonformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, P.: The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem. J.96, 595 (1965)PubMedGoogle Scholar
  2. 2.
    Andrews, P.: Estimation of molecular size and molecular weights of biological compounds by gel filtration. Meth. Biochem. Anal.18, 1 (1970)Google Scholar
  3. 3.
    Arturson, G., Granath, K.: Dextrans as test molecules in studies of the functional ultrastructure of biological membranes. Clin. chim. Acta37, 309 (1972)PubMedGoogle Scholar
  4. 4.
    Berlet, H. H., Pilz, H.: Die Bedeutung von Plasmakreatin und neurologischen Erkrankungen für den Kreatingehalt im Liquor cerebrospinalis beim Menschen. Z. ges. Neurol. Psychiat.201, 310 (1972)Google Scholar
  5. 5.
    Bock, E.: In: A Manual of quantitative immuno-electrophoresis. Eds.: Axelsen, N. H., Krøll, J., Weeke, B., p. 111. Oslo: Universitetsforlaget 1973Google Scholar
  6. 6.
    Bradbury, M. W. B., Stulcova, B.: Efflux mechanism contributing to the stability of the potassium concentration in cerebrospinal fluid. J. Physiol. (Lond.)208, 415 (1970)PubMedGoogle Scholar
  7. 7.
    Brightman, M. W., Klatzo, I., Olsson, Y., Reese, T. S.: The blood-brain-barrier to proteins under normal and pathological conditions. J. Neurol. Sci.10, 215 (1970)PubMedGoogle Scholar
  8. 8.
    Brightman, M. W., Reese, T. S., Feder, N.: Assessment with the electron microscope of the permeability to peroxidase of cerebral endothelium and epithelium in mice and sharks. In: Ref. 13, p. 468Google Scholar
  9. 9.
    Bryce, C. F. A., Crichton, R. R.: The subunit structure of horse spleen apoferritin. J. biol. Chem.246, 4198 (1971)PubMedGoogle Scholar
  10. 10.
    Clausen, J.: The β-lipoprotein of serum and cerebrospinal fluid. Acta neurol. scand.42, 153 (1966)PubMedGoogle Scholar
  11. 11.
    Clementi, F., Palade, G. E.: Intestinal capillaries. I. Permeability to peroxydase and ferritin. J. Cell Biol.41, 33 (1969)PubMedGoogle Scholar
  12. 12.
    Cohen, M. W., Gerschenfeld, H. M., Kuffler, S. W.: Ionic environment of neurones and glial cells in the brain of an amphibian. J. Physiol. (Lond.)197, 363 (1968)PubMedGoogle Scholar
  13. 13.
    Crone, Ch., Lassen, N. A.: Capillary permeability. Copenhagen: Munksgaard 1970Google Scholar
  14. 14.
    Crone, C., Thompson, A. M.: Permeability of brain capilaries. In: Ref. 13, p. 447Google Scholar
  15. 15.
    Cserr, H.: Potassium exchange between cerebrospinal fluid, plasma and brain. Amer. J. Physiol.209, 1219 (1965)PubMedGoogle Scholar
  16. 16.
    Davson, H.: Physiology of the cerebrospinal fluid. London: Churchill, Ltd. 1967Google Scholar
  17. 17.
    Dohrmann, G. J., Bucy, P. C.: Human choroid plexus: a light and electron microscopic study. J. Neurosurg.33, 506 (1970)PubMedGoogle Scholar
  18. 18.
    Dunn, J. S., Wyburn, G. M.: The anatomy of the bloodbrain barrier: a review. Scot. med. J.17, 21 (1972)PubMedGoogle Scholar
  19. 19.
    Felgenhauer, K.: Moleculat size of human serum proteins determined by exclusion gel electrophoresis. Clin. chim. Acta32, 53 (1971)PubMedGoogle Scholar
  20. 20.
    Felgenhauer, K.: Evaluation of molecular size in gelelectrophoretic techniques. Hoppe Seylers Z. physiol. Chem. (1974) (in press)Google Scholar
  21. 21.
    Felgenhauer, K., Engel, H., Rapic, N., Schliep, G.: Rapid concentration of small volumes of protein solution. Z. klin. Chem. klin. Biochem.11, 173 (1973)PubMedGoogle Scholar
  22. 22.
    Felgenhauer, K., Graesslin, D., Huismans, B. D.: Comparison of slab and cylinder gel focusing. Prot. Biol. Fluids19, 575 (1971)Google Scholar
  23. 23.
    Forster, R. E.: In: Current topics in membranes and transport. Eds.: Bronner, F., and Kleinzeller, A., II, p. 41. New York, London: Acad. Press 1971Google Scholar
  24. 24.
    Frick, E.: Quantitative Bestimmung des Transferrins im normalen und pathologischen Liquor cerebrospinalis. Klin. Wschr.41, 75 (1963)PubMedGoogle Scholar
  25. 25.
    Frick, E.: Barriers of the central nervous system and physiology of proteins. Int. Ophthal. Clinics5, 683 (1965)Google Scholar
  26. 26.
    Gottesleben, A., Bauer, H. J.: Quantitative Immunochemie der Liquorproteine bei entzündlichen Erkrankungen des Nervensystems. Germ. med. Mth.12, 331 (1967)Google Scholar
  27. 27.
    Greenstein, J. P., Winitz, M.: Chemistry of the amino acids, I. p. 467. New York: Wiley Inc. 1961Google Scholar
  28. 28.
    Guroff, G.: In: Basic neurochemistry, eds.: R. W. Alberset al. p. 191. Boston: Little, Brown and Co. 1972Google Scholar
  29. 29.
    Hurliman, J., Waldesbühl, M., Zuber, C.: Human salivary immunoglobulin A. Biochim. biophys. Acta (Amst.)181, 393 (1969)PubMedGoogle Scholar
  30. 30.
    Jost, W.: Fundamental aspects of diffusion processes. Angew. Chemie (Internat. edit.)3, 713 (1964)Google Scholar
  31. 31.
    Karnovsky, M. J.: Morphology of capillaries with special reference to muscle capillaries. In: Ref. 13, p. 341Google Scholar
  32. 32.
    Katzmann, R.: Blood-brain-CSF barriers. In: Ref. 28, p. 327Google Scholar
  33. 33.
    Kefalides, N. A.: Chemical properties of basement membranes. In: Int. Rev. exp. Path.10, 1 (1972)Google Scholar
  34. 34.
    Klotz, I. M., Darnall, D. W.: Protein subunits: a table. Science166, 126 (1969)PubMedGoogle Scholar
  35. 35.
    Lajtha, A., Ford, D. H. (eds.): Brain barrier systems. Amsterdam: Elsevier Publ. Co. 1968Google Scholar
  36. 36.
    Landis, E. M., Pappenheimer, J. R.: Exchange of substances through capillary walls. Handbook of physiology, circulation, vol. II, p. 961. Baltimore: Williams and Wilkins 1963Google Scholar
  37. 37.
    Laurent, T. C.: The structure and function of the intercellular polysaccharides in connective tissue. In: Ref. 13, p. 261Google Scholar
  38. 38.
    Laurent, T. C., Killander, J.: A theory of gel filtration and its experimental verification. J. Chromatogr.14, 317 (1964)Google Scholar
  39. 39.
    Laurrell, C.-B.: Electroimmuno assay. Scand. J. clin. Lab. Invest.29, Suppl. 124, 21 (1972)Google Scholar
  40. 40.
    Levy, R. J., Bilheimer, D. W., Eisenberg, S.: In: Plasma proteins (ed. R. M. S. Smellie). London-New York: Acad. Press 1971Google Scholar
  41. 41.
    Lieb, W. R., Stein, W. D.: The molecular basis of simple diffusion within biological membranes. In: Current topics in membranes and transport2, 1 (1971)Google Scholar
  42. 42.
    Link, H., Zettervall, O., Blennow, G.: Individual cerebrospinal fluid (CSF) proteins in the evaluation of increased CSF total protein. Z. ges. Neurol. Psychiat.203, 119 (1972)Google Scholar
  43. 43.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem.193, 265 (1951)PubMedGoogle Scholar
  44. 44.
    Lüscher, E. F.: The biochemical properties and the biological function of fibrinogen. Prot. Biol. Fluids14, 1 (1966)Google Scholar
  45. 45.
    Manuel, Y., Revillard, J. P., Betuel, H.: Proteins in normal and pathological urine. Basel: S. Karger 1970Google Scholar
  46. 46.
    Mc.Ilwain, H., Bachelard, H. S.: Biochemistry and the central nervous system. Edinburgh: Churchill Livingstone 1971Google Scholar
  47. 47.
    Oldendorf, W. H.: Brain uptake of radiolabeled amino acids, amines and hexoses after arterial injection. Amer. J. Physiol.221, 1629 (1971)PubMedGoogle Scholar
  48. 48.
    Pappenheimer, J. R.: The ionic composition of cerebral extracellular fluid and its relation to control breathing. Harvey Lect.61, 71 (1967)PubMedGoogle Scholar
  49. 49.
    Peeters, H. (ed.): Urinary proteins. Prot. Biol. Fluids21, 341–561 (1973)Google Scholar
  50. 50.
    Putnam, F. W. (ed.): The proteins. New York: Acad. Press 1966Google Scholar
  51. 51.
    Rask, L., Peterson, P. A.: Structure and function of the retinol-binding protein: a protein characteristic of tubular proteinuria. Prot. Biol. Fluids21, 485 (1973)Google Scholar
  52. 52.
    Rauen, H. W. (ed.): Biochemisches Taschenbuch. Berlin-Heidelberg-New York: Springer 1964Google Scholar
  53. 53.
    Reese, T. S., Karnovsky, M. J.: Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol.34, 207 (1967)PubMedGoogle Scholar
  54. 54.
    Renkin, E. M.: Filtration, diffusion and molecular sieving through porous cellulose membranes. J. gen. Physiol.38, 225 (1955)Google Scholar
  55. 55.
    Renkin, E. M.: Stofftransport durch die Wände von Blutkapillaren. Klin. Wschr.41, 147 (1963)PubMedGoogle Scholar
  56. 56.
    Renkin, E. M.: Permeability and molecular size in “peripheral” and glomerular capillaries. In: Ref. 13, p. 544Google Scholar
  57. 57.
    Rosenthal, F. D., Soothill, J. F.: An immunochemical study of the proteins in cerebrospinal fluid. J. Neurol. Neurosurg. Psychiat.25, 177 (1962)PubMedGoogle Scholar
  58. 58.
    Schliep, G., Felgenhauer, K.: The α2-macroglobulin level in cerebrospinal fluid, a parameter for the condition of the blood-CSF-barrier. J. Neurol.207, 171 (1974)PubMedGoogle Scholar
  59. 59.
    Schliep, G., Rapic, N., Felgenhauer, K.: Quantitation of high-molecular proteins in cerebrospinal fluid. Z. klin. Chem. klin. Biochem.12, 367 (1974)PubMedGoogle Scholar
  60. 60.
    Schmidt, R. M.: Der Liquor cerebrospinalis. Berlin: VEB Verlag und Gesundheit, 1968Google Scholar
  61. 61.
    Schultze, H. E., Heremans, J. F.: Molecular biology of human proteins, vol. I, Amsterdam: Elsevier 1966Google Scholar
  62. 62.
    Siegel, L. M., Monty, K. J.: Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Biochim. biophys. Acta (Amst.)112, 346 (1966)PubMedGoogle Scholar
  63. 63.
    Slater, G. G.: Pore-limit electrophoresis on a gradient of polyacrylamide gel. Analyt. Biochem.24, 215 (1968)PubMedGoogle Scholar
  64. 64.
    Snodgrass, S. R., Cutler, R. W. P., Kang, E. S., Lorenzo, A. V.: Transport of neutral amino acids from feline cerebrospinal fluid. Amer. J. Physiol.217, 974 (1969)PubMedGoogle Scholar
  65. 65.
    Sober, H. A. (ed.) Handbook of biochemistry. Cleveland: The Chemical Rubber Co. 1970.Google Scholar
  66. 66.
    Svehag, S. E., Chesebro, B., Bloth, B.: Ultrastructure of gamma M immunoglobulin and alpha-2-macroglobulin: Electron-microscopic study. Science158, 933 (1967)PubMedGoogle Scholar
  67. 67.
    Weeke, B.: Quantitative estimation of human immunoglobulins following carbamylation by electrophoresis in antibody-containing agarose. Scand. J. clin. Lab. Invest.22, 107 (1968)PubMedGoogle Scholar
  68. 68.
    West, E. St.: Textbook of biophysical chemistry. New York: MacMillan Co. 1963Google Scholar
  69. 69.
    Wyke, B.: Brain function and metabolic disorders. London: Butterworths 1963Google Scholar
  70. 70.
    Yudilevich, D. L., De Rose, N., Sepulveda, F. V.: Facilitated transport of amino acids through the blood-brain-barrier of the dog studied in a single capillary circulation. Brain Res.44, 569 (1972)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • K. Felgenhauer
    • 1
  1. 1.Nervenklinik der Universität KölnGermany

Personalised recommendations