Advertisement

Plasma Chemistry and Plasma Processing

, Volume 13, Issue 3, pp 379–397 | Cite as

Determination of the arc-root position in a DC plasma torch

  • Seungho Paik
  • P. C. Huang
  • J. Heberleinand
  • E. Pfender
Article

Abstract

The behavior of an arc operated in the nontransferred mode with a conical-shaped cathode and a nozzle-shaped anode is studied by applying general tyro-dimensional conservation equations and auxiliary relations for the simulation of arc channel flows. The position of the arc-root attachment at the anode surface is determined by using Steenbeck's minimum principle, which postulates a minimum arc voltage for a given current and certain given boundary conditions. The overall effects of the anode-arc root on the plasma flow are, studied by comparing the results with those of the transferred mode of operation. Specific arc-channel diameters are chosen in the simulation in order to verify flit, numerical model through comparisons with experimental results. The results show that Steenbeck's minimum principle is useful for determining the position of the arc-root attachment at the anode surface. Application of this method for control of the arc-anode attachment may be valuable in the design and operation of plasma spray torches to avoid jet instabilities.

Key Words

DC plasma torches anode arc root Steenbeck minimum principle analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. C. Hsu and E. Pfender,J. Appl. Phys. 54, 4359 (1983).Google Scholar
  2. 2.
    M. C. Tsai and S. Kou,Int. J. Heat Mass Transfer 33, 2089 (1990).Google Scholar
  3. 3.
    P. C. Huang and E. Pfender,Plasma Chem. Plasma Process. 11, 129 (1991).Google Scholar
  4. 4.
    W. Finkelnhurg and H. Maecker, “Electric Arcs and Thermal Plasmas,” inEncyclopedia of Physics, Vol. XXII, Springer-Verlag, Berlin (1956).Google Scholar
  5. 5.
    D. A. Scott, P. Kovitya, and G. N. Haddad,J. Appl. Phys. 66, 5232 (1989).Google Scholar
  6. 6.
    R. Westhoff and J. Szekely,J. Appl. Phys. 70, 3455 (1991).Google Scholar
  7. 7.
    M. A. Langerman and E. C. Lemmon, “A Multidimensional Finite Element MHD Model of Internal Plasma Flows,”Heat Transfer irr Plasma Processing HTL, Vol. 161, ASME (1991), p. 121.Google Scholar
  8. 8.
    E. Wender, S. A. Wutzke, and E. R. C. Eckert, “An Arc Tunnel Facility for the Thermal Analysis of Anode and Cathode Regimes in an Electric Arc Column,” NASA CR-54080, 1964.Google Scholar
  9. 9.
    Panton, R. L.,Incompressible Flow. Wiley, New York (1984).Google Scholar
  10. 10.
    E. Pfender, inGaseous Electronics, Vol. I, M. N. Hirsh and H. J. Oskam, eds., Academic Press, New York (1978), p. 291.Google Scholar
  11. 11.
    D. M. Chen, K. C. Hsu, and E. Pfender,Plasma Chem. Plasma Process. 1, 295 (1981).Google Scholar
  12. 12.
    R. B. Bird, W. E. Stewart, and F. N. Lightfood,Transport Phenomena, Wiley, New York (1960).Google Scholar
  13. 13.
    K. C. Hsu. PhD Thesis, Dept. of Mech. Eng., Univ. of Minnesota, 1982.Google Scholar
  14. 14.
    E. Pfender, “General Computer Codes for the Calculations of Thermodynamic and Transport Properties,” High Temperature Lab., Univ. of Minnesota. 1992.Google Scholar
  15. 15.
    J. Aubreton and P. Fauchais,Rev. Phys. Appl. 18, 51 (1983).Google Scholar
  16. 16.
    D. L. Evans and R. S. Tankin,Phys. Fluids 10, 1137 (1967).Google Scholar
  17. 17.
    V. R. Watson and E. B. Pegot, “Numerical Calculations for the Characteristics of a Gas Flowing Axially through a Constricted Arc,” NASA TN D-4(142, 1967.Google Scholar
  18. 18.
    S. V. Patankar,Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York (1980).Google Scholar
  19. 19.
    S. A. Wutzke, E. Pfender, and E. R. G. Eckert.A1AA J. 6, 1474 (1968).Google Scholar
  20. 20.
    H. O. Schrade, “On Arc Pumping and the Motion of Electric Arcs in a Transverse Magnetic Field.” ARL 67-0129, Aerospace Research Laboratories, 1967.Google Scholar
  21. 21.
    Th. Peters,Z. Phys. 144, 612 (1956).Google Scholar
  22. 22.
    S. A. Wutzke, PhD Thesis, Dept. of Mech. Eng. Univ. of Minnesota. 1967.Google Scholar
  23. 23.
    A. B. Cambel,Plasma Physics and Magnetofluidmechanics. McGraw-Hill. New York (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Seungho Paik
    • 1
  • P. C. Huang
    • 2
  • J. Heberleinand
    • 2
  • E. Pfender
    • 2
  1. 1.Idaho National Engineering LaboratoryIdaho FallsUSA
  2. 2.ERC for Plasma-Aided Manufacturing, Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations