Mathematische Annalen

, Volume 257, Issue 4, pp 403–418 | Cite as

Von Neumann algebras associated with pairs of lattices in Lie groups

  • Marc A. Rieffel
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akemann, C.A.: Operator algebras associated with Fuchsian groups (preprint)Google Scholar
  2. 2.
    Brown, L.G., Green, P., Rieffel, M.A.: Stable isomorphism and strong Morita equivalence ofC *-algebras. Pacific J. Math.71, 349–363 (1977).Google Scholar
  3. 3.
    Connes, A.: Classification of injective factors. Ann. Math.104, 73–116 (1976)Google Scholar
  4. 4.
    Dixmier, J.: Les algèbres d'opérateurs dans l'espace Hilbertien. Paris: Gauthier-Villars 1957Google Scholar
  5. 5.
    Doplicher, S., Kastler, D., Stormer, E.: Invariant states and asymptotic abelianness. J. Functional Analysis3, 419–434 (1969)Google Scholar
  6. 6.
    Green, P.: The local structure of twisted covariance algebras. Acta Math.140, 191–250 (1978)Google Scholar
  7. 7.
    Haagerup, U.: Operator valued weights in von Neumann algebras. I. J. Functional Analysis32, 175–206 (1979)Google Scholar
  8. 8.
    Halmos, P.R.: Ergodic theory. New York: Chelsea 1956Google Scholar
  9. 9.
    Kadison, R.V.: Unitary invariants for representations of operator algebras. Ann. Math.66, 304–379 (1957)Google Scholar
  10. 10.
    Nielsen, O.A.: The Mackey-Blattner theorem and Takesaki's generalized commutation relation for locally compact groups. Duke Math. J.40, 105–114 (1973)Google Scholar
  11. 11.
    Rieffel, M.A.: Induced representations ofC *-algebras. Adv. Math.13, 176–257 (1974)Google Scholar
  12. 12.
    Rieffel, M.A.: Strong Morita equivalence of certain transformation groupC *-algebras. Math. Ann.222, 7–22 (1976)Google Scholar
  13. 13.
    Rieffel, M.A.: Commutation theorems and generalized commutation relations. Bull. Soc. Math. France104, 205–224 (1976)Google Scholar
  14. 14.
    Rieffel, M.A.: The type of group measure space von Neumann algebras. Monatsh. Math.85, 149–162 (1978)Google Scholar
  15. 15.
    Rieffel, M.A.: Regularly related lattices in Lie groups. Duke J. Math.45, 691–699 (1978)Google Scholar
  16. 16.
    Rieffel, M.A.:C *-algebras associated with irrational rotations. Pacific J. Math.93, 415–429 (1981)Google Scholar
  17. 17.
    Rieffel, M.A.: Ergodic decomposition for pairs of fattices in Lie groups. J. reine ang. Math.326, 45–53 (1981)Google Scholar
  18. 18.
    Takesaki, M.: A generalized commutation theorem for the regular representation. Bull. Soc. Math. France97, 289–297 (1969)Google Scholar
  19. 19.
    Takesaki, M.: Theory of operator algebras. I. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  20. 20.
    Van Daele, A.: Fixed points and commutation theorems.C *-algebras and applications to physics. In: Lecture Notes in Mathematics, Vol. 650, pp. 140–144, Berlin, Heidelberg, New York: Springer 1978Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Marc A. Rieffel
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations