Bioprocess Engineering

, Volume 14, Issue 4, pp 169–175 | Cite as

Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum

  • A. -P. Zeng


Stoichiometric analysis is applied to continuous glycerol fermentation by Clostridium butyricum to calculate theoretical maximum yields and to predict preferred pathways under different conditions. The upper limits of product concentration and productivity as a function of dilution rate in continuous culture is also predicted from product inhibition kinetic. The theoretical maximum propanediol yield (0.72 mol/mol glycerol) which is calculated for a culture without hydrogen and butyric acid formation agrees well with the experimental maximum value (around 0.71 mol/mol). Comparisons of experimental results (product concentration and productivity) with theoretical calculations and those of the glycerol fermentation by Klebsiella pneumoniae reveal that the production of 1,3-propanediol by C. butyricum is far below the optimum performance available with the present strain. One of the reasons is the relatively high formation of butyric acid under the culture conditions so far applied. The distribution of reducing equivalents to propanediol and hydrogen is also suboptimal. The utilization of the reducing power from pyruvate oxidation for propanediol production is about 60–70% of the theoretical maximum under the present experimental conditions.


Propanediol Butyric Acid Dilution Rate Klebsiella Klebsiella Pneumoniae 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tran-Dinh, K.; Hill, F.F.: Verfahren zur Herstellung von 1,3-Propandiol. German patent no. DE 3734764 A1, 1989Google Scholar
  2. 2.
    Gottschalk, G.; Averhoff, B.: Process for the microbial preparation of 1,3-propanediol from glycerol. European patent no. EP 0373230 A1, 1990Google Scholar
  3. 3.
    Günzel, B.;Yonsel, S.;Deckwer, W.-D.: Fermentative production of 1,3-propanediol from glycerol by Clostridium butyricum up to a scale of 2 m3. Appl. Microbiol. Biotechnol. 36 (1991) 289–294Google Scholar
  4. 4.
    Biebl, H.;Marten, S.;Hippe, H.;Deckwer, W.-D.: Glycerol conversion to 1,3-propanediol by newly isolated clostridia. Appl. Microbiol. Biotechnol. 36 (1992) 592–597Google Scholar
  5. 5.
    Streekstra, H.;Teixeira de Mattos, M.J.;Neijssel, O.M.;Tempest, D.W.: Overflow metabolism during anaerobic growth of Klebsiella aerogenes NCTC 418 on glycerol and dihydroxyacetone in chemostat culture. Arch Microbiol. 147 (1987) 268–275Google Scholar
  6. 6.
    Forsberg, C.W.: Production of 1,3-propanediol from glycerol by Clostridium butyricum and other Clostridium species. Appl. Environ. Microbiol. 53 (1987) 639–643Google Scholar
  7. 7.
    Homann, T.;Tag, C.;Biebl, H.;Deckwer, W.-D.;Schink, B.: Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl. Microbiol. Biotechnol. 33 (1990) 121–126Google Scholar
  8. 8.
    Zeng, A.-P.;Biebl, H.;Schlieker, H.;Deckwer, W.-D.: Pathway analysis of glycerol fermentation by Klebsiella pneumoniae: Regulation of reducing equivalent balance and product formation. Enzyme Microb. Technol. 15 (1993) 770–779Google Scholar
  9. 9.
    Menzel, K.; Zeng, A.-P.; Deckwer, W.-D.: High concentration and productivity of 1,3-propanediol from glycerol fermentation by Klebsiella pneumoniae in continuous culture. Enzyme Microb. Technol. 1995 (submitted)Google Scholar
  10. 10.
    Tag, C.G.: Mikrobielle Herstellung von 1,3-propanediol. Ph. D Thesis, University of Oldenburg, FRG, 1990Google Scholar
  11. 11.
    Günzel, B.: Mikrobielle Herstellung von 1,3-Propandiol durch Clostridium butyricum und adsorptive Abtrennung von Diolen. Ph.D. thesis, TU Braunschweig, FRG, 1991Google Scholar
  12. 12.
    Solomon, B.O.;Zeng, A.-P.;Biebl, H.;Posten, C.;Deckwer, W.-D.: Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and some Clostridia during anaerobic growth on glycerol. J. Biotechnol. 39 (1995) 107–117Google Scholar
  13. 13.
    Ruch, F.E.;Lengeler, J.;Lin, E.C.C: Regulation of glycerol catabolism in Klebsiella aerogenes. J. Bacteriol. 119 (1974) 50–56Google Scholar
  14. 14.
    Neijssel, O.M.;Hueting, S.;Crabbendam, K.J.;Tempest, D.W.: Dual pathways of glycerol assimilation in Klebsiella aerogenes NCIB 418. Their regulation and possible function significance. Arch. Microbiol. 104 (1975), 83–87Google Scholar
  15. 15.
    Forage, R.G.;Foster, M.A.: Glycerol fermentation in Klebsiella pneumoniae. Functions of the coenzyme B12-dependent glycerol and diol dehydratases. J. Bacteriol. 149 (1982) 413–419Google Scholar
  16. 16.
    Lin, E.C.C.: Glycerol dissimilation and its regultion in bacteria. Ann. Rev. Microbiol. 30 (1976) 535–578Google Scholar
  17. 17.
    Vasconcelos, I.;Girbal, L.;Soucaille, P.: Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J. Bacteriol. 176 (1994) 1443–1450Google Scholar
  18. 18.
    Herbert, D.;Phipps, P.J.;Strange, R.E.: Chemical analysis of microbial cells. In: Norris JM, Ribbons DW (eds) Methods in Microbiology, vol 5b, Academic Press, New York, 209–344, 1971Google Scholar
  19. 19.
    Zeng, A.-P.;Ross, A.;Biebl, H.;Tag, C.;Günzel, B.;Deckwer, W.-D.: Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pnenumoniae in glycerol fermentation. Biotechnol. Bioeng. 44 (1994) 902–911Google Scholar
  20. 20.
    Reimann, A.; Biebl, H.: Influence of iron, phosphate and methyl viologen on glycerol fermentation of Clostridium butyricum. Poster presented at the 7th European Conference on Biotechnology. March 19–23, Nice, France, 1995Google Scholar
  21. 21.
    Zeng, A.-P.: Effect of CO2 absorption on the measurement of CO2 evolution rate in aerobic and anaerobic continuous cultures. Appl. Microbiol. Biotechnol. 42 (1995) 688–691Google Scholar
  22. 22.
    Barbirato, F.; Grivet, J.P.; Bories, A.: Glycerol fermentation to 1,3-propanediol by Enterobacterial species and related inhibition by an intermediate metabolite: 3-hydroxypropionaldehyde. Poster (# MEP 55) presented at the 7th European Congress on Biotechnology, Nice, France, 1995Google Scholar
  23. 23.
    Cameron, D.C.; Skraly, F.A.; Wilard, B.L.; Zhu, M.-Y.; Held, A.M.; Shaw, A.J.: Metabolic engineering of three-carbon metabolism. Poster presented at “Biochemical Engineering IX”, Davos, Switzland, 1995Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • A. -P. Zeng
    • 1
  1. 1.BiochemicalEngineering DivisionGBF-Gesellschaft für Biotechnologische Forschung mbHBraunschweigGermany

Personalised recommendations