Brain Topography

, Volume 9, Issue 4, pp 295–302 | Cite as

A robust assessment of the NoGo-anteriorisation of P300 microstates in a cued Continuous Performance Test

  • A. J. Fallgatter
  • D. Brandeis
  • W. K. StrikEmail author


The Continuous Performance Test (CPT) is successfully applied in clinical routine to evaluate attentional performance. The aim of the present study was to investigate the features of the ERPs related to the conditions of a cued CPT, in particular the Go-and the NoGo-condition demanding either the execution or the inhibition of a prepared motor response. For that purpose, 21-channel-ERPs of ten healthy subjects elicited by the Go, NoGo, primer and distractor cues were analyzed with reference-independent methods. The P300 microstates were identified by means of a data-driven segmentation of the ERPs based on the individual peaks of the Global Field Power (GFP). The topographical assessment of the P300 fields yielded an extraordinarily robust result consisting of a more anterior location of the positive centroid in the NoGo compared to the Go condition in every single subject. In conclusion, this result is an impressive validation of the applied reference-independent spatial analysis which reveals the rapid changes of the brain electrical field configurations related to the execution/inhibition paradigm within the cued CPT. Because of the stability of the NoGo anteriorisation we propose to use this parameter as a topographical standard index, analogous to the amplitude effect between oddball targets and nontargets which defines the classical P300.

Key words

CPT Evoked potentials topography Spatial analysis Go-NoGo task NoGo-anteriorisation. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brandeis, D., van Leeuwen, T.H. and Steinhausen, H.-C. Brain mapping of orienting- and inhibition-deficits in ADD-chil- dren. Brain Topogr., 1995, 8: 415.Google Scholar
  2. Buchsbaum, M.S., Nuechterlein, K.H., Haier, R.J., Wu, J., Sicotte, N., Hazlett, E., Asarnow, R., Potkin, S. and Guich, S. Glucose metabolic rate in normals and schizophrenics during the continuous performance test assessed by positron to- mography. Br. J. Psychiatry, 1990, 156: 216–227.Google Scholar
  3. Buchsbaum, M.S., Haier, R.J., Potkin, S.G., Nuechterlein, K.H., Bracha, H.S., Katz, M., Lohr, J., Wu, J., Lottenberg, S., Jerabek, P.A., Trenary, M., Tafalla, R., Reynolds, C. and Bunney, W.E. Frontostriatal disorder of cerebral metabo- lism in never-medicated schizophrenics. Arch. Gen. Psy- chiatry, 1992, 49: 935–942.Google Scholar
  4. Cornblatt, B.A., Lenzenweger, M.F. and Erlenmeyer-Kimling, L. The continuous performance test, identical pairs version: II. Contrasting attentional profiles in schizophrenic and depressed patients. Psychiatry Res., 1989, 29: 65–85.Google Scholar
  5. Cornblatt, B.A. and Keilp, J.G. Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophr. Bull., 1994, 20: 31–46.Google Scholar
  6. Earle-Boyer, E.A., Serper, M.R., Davidson, M. and Harvey, P.D. Continuous performance tests in schizophrenic patients: stimulus and medication effects on performance. Psychiatry Res., 1991, 37:47–56.Google Scholar
  7. Gevins, A.S., Bressler, S.L., Morgan, N.H., Cutillo, B.A., White, R.M., Greer, D.S. and Illes, J. Event-related covariances during a bimanual visuomotor task. I. Methods and analysis of stimulus-and response-locked data. Electroenceph. clin. Neurophysiol, 1989, 74:58–75.Google Scholar
  8. Guich, S.M., Buchsbaum, M.S., Burgwald, L., Wu, J., Haier, R., Asarnow, R., Nuechterlein, K. and Potkin, S. Effect of attention on frontal distribution of delta activity and cerebral metabolic rate in schizophrenia. Schizophr. Res., 1989, 2: 439–448.Google Scholar
  9. Jodo, E. and Inoue, K. Effects of practice on the P300 in a Go/NoGo task. Electroenceph. clin. Neurophysiol., 1990, 76: 249–257.Google Scholar
  10. Lehmann, D. and Skrandies, W. Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroenceph. clin. Neurophysiol., 1980, 48: 609–621.Google Scholar
  11. Lehmann, D. and Skrandies, W. Spatial analyses of evoked potentials in man — a review. Progr. Neurobiol., 1984, 23: 227–250.Google Scholar
  12. Lehmann, D. Principles of spatial analysis. In: A. Gevins and A. Remond (Eds.), Handbook of electroencephalography and clinical neurophysiology, Vol. 1: Methods of analysis of brain electrical and magnetic signals. Elsevier, Amsterdam, 1987: 309–354.Google Scholar
  13. Näätänen, R. Event-related brain potentials in research of cognitive processes — a classification of components. In: E. van der Meer and J. Hoffmann (Eds.), Knowledge aided information processing. Elsevier, Amsterdam, 1987: 241–273.Google Scholar
  14. Pfefferbaum, A., Ford, J.M., Weiler, B.J. and Kopell, B.S. ERPs to response reduction and inhibition. Electroenceph. clin. Neurophysiol., 1985, 60: 423–434.Google Scholar
  15. Rezai, K., Andreasen, N.C., Alliger, R., Cohen, G., Swayze, V. and O'Leary, D.S. The neuropsychology of the prefrontal cortex. Arch. Neurol, 1993, 50: 636–642.Google Scholar
  16. Roberts, L.E., Rau, H., Lutzenberger, W. and Birnbaumer, N. Mapping P300 waves onto inhibition: Go/No-Go discrimination. Electroenceph. clin. Neurophysiol., 1994, 92:44–55.Google Scholar
  17. Rosvold, H.E., Mirsky, A.F., Sarason, I., Bransome, E.D. and Beck, L.H. A continuous performance test of brain damage. J. Consult. Psychol., 1956, 20: 343.Google Scholar
  18. Schroeder, J., Buchsbaum, M.S., Siegel, B.V., Geider, F.J., Haier, R.J., Lohr, J., Wu, J. and Potkin, S.G. Patterns of cortical activity in schizophrenia. Psychol. Med., 1994, 24:947–955.Google Scholar
  19. Schupp, H.T., Lutzenberger, W., Rau, H. and Birbaumer, N. Positive shifts of event-related potentials: a state of cortical disfacilitation as reflected by the startle reflex probe. Electroenceph. clin. Neurophysiol., 1994, 90:135–144.Google Scholar
  20. Simson, R., Vaughan, Jr. H.G. and Ritter, W. The scalp topography of potentials in auditory and visual Go/No-Go tasks. Electroenceph. clin. Neurophysiol., 1977, 43: 864–875.Google Scholar
  21. Strik, W.K., Dierks, T., Franzek, E., Stöber, G. and Maurer, K. P300 in schizophrenia: interactions between amplitudes and topography. Biol. Psychiatry., 1994, 35: 850–856.Google Scholar

Copyright information

© Human Sciences Press, Inc 1997

Authors and Affiliations

  1. 1.Lab. of Psychiatric Neurophysiology, Dept. of PsychiatryUniversity Hospital of WürzburgGermany
  2. 2.Dept. of Child and Adolescent PsychiatryUniversity Hospital of ZurichSwitzerland

Personalised recommendations