Journal of Mammalian Evolution

, Volume 2, Issue 2, pp 133–152

The pitfalls of molecular phylogeny based on four species, as illustrated by the Cetacea/Artiodactyla relationships

  • Hervé Philippe
  • Emmanuel Douzery
Article

Abstract

We study the reliability of phylogeny based on four taxa, when the internal, ancestral, branch is short. Such a quartet approach has been broadly used for inferring phylogenetic patterns. The question of branching pattern between the suborders Ruminantia and Suiformes (order Artiodactyla) and the order Cetacea is chosen as an example. All the combinations of four taxa were generated by taking on and only one species per group under study (three ingroups and one outgroup). Using real sequences, the analysis of these combinations demonstrates that the quartet approach is seriously misleading. Using both maximum parsimony and distance methods, it is possible to find a quartet of species which provided a high bootstrap proportion for each of the three possible unrooted trees. With the same set of sequences, we used all the available species simultaneously to construct a molecular phylogeny. This approach proved much more reliable than the quartet approach. When the number of informative sites is rather low, the branching patterns are not supported through bootstrap analysis, preventing us from false inference due to the lack of information. The reliable resolution of the phylogenetic relationships among Ruminantia, Suiformes, and Cetacea will therefore require a large number of nucleotides, such as the complete mitochondrial genomes of at least 30 species.

Key Words

molecular phylogeny quartets mitochondrial DNA Cetacea Artiodactyla 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allard, M. W., and Miyamoto, M. M. (1992). Testing phylogenetic approaches with empirical data, as illustrated with the parsimony method.Mol. Biol. Evol. 9: 778–786.PubMedGoogle Scholar
  2. Allard, M. W., Miyamoto, M. M., Jarecki, L., Kraus, F., and Tennant, M. R. (1992). DNA systematics and evolution of the artiodactyl family Bovidae.Proc. Natl. Acad. Sci. USA 89: 3972–3976.PubMedGoogle Scholar
  3. Anderson, S., Bankier, A. T., Barrel, B. G., De Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome.Nature 290: 457–465.PubMedGoogle Scholar
  4. Arnason, U., and Johnsson, E. (1992). The complete mitochondrial DNA sequence of the harbor seal,Phoca vitulina.J. Mol. Evol. 34: 493–505.PubMedGoogle Scholar
  5. Arnason, U., Gullberg, A., and Widegren, B. (1991). The complete nucleotide sequence of the mitochondrial DNA of the fin whale,Balaenoptera physalus.J. Mol. Evol. 33: 556–568.PubMedGoogle Scholar
  6. Arnason, U., Gretarsdottir, S., and Gullberg, A. (1993). Comparisons between the 12S rRNA, 16S rRNA, NADH1 and COI genes of sperm and fin whale mitochondrial DNA.Biochem. Syst. Ecol. 21: 115–121.Google Scholar
  7. Czelusniak, J., Goodman, M., Koop, B. F., Tagle, D. A., Shoshani, J., Braunitzer, G., Kleinschmidt, T., De Jong, W. W., and Matsuda, G. (1990). Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of Eutheria. In:Current Mammalogy, Vol. 2. H. H. Genoway, ed., pp. 545–572, Plenum Press, New York.Google Scholar
  8. DeWalt, T. S., Sudman, P. D., Hafner, M. S., and Davis, S. K. (1993). Phylogenetic relationships of pocket gophers (Cratogeomys andPappogeomys) based on mitochondrial DNA cytochrome b sequences.Mol. Phys. Evol. 2: 193–204.Google Scholar
  9. Douzery, E. (1993). Evolutionary relationships among Cetacea based on the sequence of the mitochondrial 12S rRNA gene: Possible paraphyly of toothed-whales (odontocetes) and long separate evolution of sperm whales (Physeteridae).C. R. Acad. Sci. Paris 316: 1511–1518.Google Scholar
  10. Felsenstein, J. (1978). Cases in which parsimony or compatibility methods will be positively misleading.Syst. Zool. 27: 401–410.Google Scholar
  11. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap.Evolution 39: 783–791.Google Scholar
  12. Felsenstein, J. (1989).PHYLIP Manual Version 3.3, University Herbarium, University of California, Berkeley.Google Scholar
  13. Fitch, W. M., and Beintema, J. J. (1990). Correcting parsimonious trees for unseen nucleotide substitutions: The effect of dense branching as exemplified by ribonuclease.Mol. Biol. Evol. 7: 437–443.Google Scholar
  14. Gingerich, P. D., Smith, B. H., and Simons, E. L. (1990). Hind limbs of EoceneBasilosaurus: Evidence of feet in whales.Science 249: 154–156.Google Scholar
  15. Graur, D. (1993a). Molecular phylogeny and the higher classification of eutherian mammals.Trends Ecol. Evol. 4: 141–147.Google Scholar
  16. Graur, D. (1993b). Towards a molecular resolution of the ordinal phylogeny of the eutherian mammals.FEBS 325: 152–159.PubMedGoogle Scholar
  17. Graur, D., and Higgins, D. G. (1994). Molecular evidence for the inclusion of cetaceans within the order Artiodactyla.Mol. Biol. Evol. 11: 357–364.PubMedGoogle Scholar
  18. Graur, D., Hide, W. A., and Li, W.-H. (1991). Is the guinea-pig a rodent?Nature 351: 649–652.PubMedGoogle Scholar
  19. Hedges, S. B. (1992). The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies.Mol. Biol. Evol. 9: 366–369.PubMedGoogle Scholar
  20. Hedges, S. B., Hass, C. A., and Maxson, L. R. (1993). Relations of fish and tetrapods.Nature 363: 501–502.PubMedGoogle Scholar
  21. Hendy, M. D., and Penny, D. (1989). A framework for the quantitative study of evolutionary trees.Syst. Zool. 38: 297–309.Google Scholar
  22. Hillis, D. M., and Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis.Syst. Biol. 42: 182–192.Google Scholar
  23. Hixson, J. E., and Brown, W. M. (1986). A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: Sequence, structure, evolution, and phylogenetic implications.Mol. Biol. Evol. 3: 1–18.PubMedGoogle Scholar
  24. Irwin, D. M., and Arnason, U. (1994). Cytochrome b gene of marine mammals: Phylogeny and evolution.J. Mammal. Evol. 2: 37–55.Google Scholar
  25. Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochrome b gene of mammals.J. Mol. Evol. 32: 128–144.PubMedGoogle Scholar
  26. Kraus, F., and Miyamoto, M. M. (1991). Rapid cladogenesis among the pecoran ruminants: Evidence from mitochondrial DNA sequences.Syst. Zool. 40: 117–130.Google Scholar
  27. Lake, J. A. (1987). A rate-independent technique for analysis of nucleic acid sequence: Evolutionary parsimony.Mol. Biol. Evol. 4: 167–191.PubMedGoogle Scholar
  28. Lecointre, G., Philippe, H., Lê, V., and Le Guyader, H. (1993). Species sampling has a major impact on phylogenetic inference.Mol. Phys. Evol. 2: 205–224.Google Scholar
  29. Lecointre, G., Philippe, H., Lê, V., and Le Guyader, H. (1994). How many nucleotides are required to resolve a phylogenetic problem? The use of a new statistical method applicable to available sequences.Mol. Phys. Evol. 3(4) (in press).Google Scholar
  30. Li, W.-H. (1993). So, what about the molecular clock hypothesis?Curr. Opin. Genet. Dev. 3: 896–901.PubMedGoogle Scholar
  31. Li, W. H., and Gouy, M. (1990). Statistical tests of molecular phylogenies. In:Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences, Methods in Enzymology, Vol. 183, R. F. Doolittle, ed., pp. 645–659. Academic Press, New York.Google Scholar
  32. Luckett, W. P., and Hartenberger, J.-L. (1993). Monophyly or polyphyly of the order Rodentia: Possible conflict between morphological and molecular interpretations.J. Mammal. Evol. 1: 127–147.Google Scholar
  33. Ma, D.-P., Zharkikh, A., Graur, D., Van de Berg, J. L., and Li, W.-H., (1993). Structure and evolution of opposum, guinea pig, and porpucine cytochrome b genes.J. Mol. Evol. 36: 327–334.PubMedGoogle Scholar
  34. Meyer, A., and Wilson, A. C. (1990). Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish.J. Mol. Evol. 31: 359–364.PubMedGoogle Scholar
  35. Milinkovitch, M. C. (1992). DNA-DNA hybridizations support ungulate ancestry of Cetacea.J. Evol. Biol. 5: 149–160.Google Scholar
  36. Miyamoto, M. M., Kraus, F., and Ryder, O. A. (1990). Phylogeny and evolution of antlered deer determined from mitochondrial DNA sequences.Proc. Natl. Acad. Sci. USA 87: 6127–6131.PubMedGoogle Scholar
  37. Philippe, H. (1993). MUST: A computer package of Management Utilities for Sequences and Trees.Nucl. Acids Res. 21: 5264–5272.PubMedGoogle Scholar
  38. Prothero, D. R., Manning, E. M., and Fischer, M. (1988). The phylogeny of the ungulates. In:The Phylogeny and Classification of the Tetrapods, Vol. 2. Mammals, M. J. Benton ed., pp. 201–234, Clarendon Press, Oxford.Google Scholar
  39. Rose, K. D. (1982). Skeleton ofDiacodexis, oldest known artiodactyl.Science 216: 621–623.Google Scholar
  40. Rose, K. D. (1987). Climbing adaptations in the early Eocene mammalChriacus and the origin of Artiodactyla.Science 236: 314–316.PubMedGoogle Scholar
  41. Saccone, C., Pesole, G., and Sbisa, E. (1991). The main regulatory region of mammalian mitochondrial DNA: Structure-function model and evolutionary pattern.J. Mol. Evol. 33: 83–91.PubMedGoogle Scholar
  42. Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 4: 406–425.PubMedGoogle Scholar
  43. Shoshani, J. (1986). Mammalian phylogeny: Comparison of morphological and molecular results.Mol. Biol. Evol. 3: 230–240.Google Scholar
  44. Steel, M. A., Lockhart, P. J., and Penny, D. (1993). Confidence in evolutionary trees from biological sequence data.Nature 264: 440–442.Google Scholar
  45. Swofford, D. L. (1985).PAUP: Phylogenetic Analysis Using Parsimony, Version 2.4.1, Illinois Natural History Survey, Champaign.Google Scholar
  46. Swofford, D. L., and Olsen, G. J. (1990). Phylogeny reconstruction. In:Molecular Systematics, D. M. Hillis and C. Moritz eds., pp. 411–501, Sinauer, Sunderland, MA.Google Scholar
  47. Szalay, F. S. (1977). Phylogenetic relationships and a classification of the eutherian Mammalia. In:Major Patterns in Vertebrate Evolution, M. K. Hecht, P. C. Goody, and B. M. Hecht, eds., pp. 315–374, Plenum Press, New York.Google Scholar
  48. Tanhauser, S. M. (1985).Evolution of Mitochondrial DNA: Patterns and Rate of Change, Ph. D. dissertation, University of Florida, Gainesville.Google Scholar
  49. Thewissen, J. G., and Hussain, S. T. (1993). Origin of underwater hearing in whales.Nature 361: 444–445.PubMedGoogle Scholar
  50. Van Valen, L. (1966). Deltatheridia, a new order of mammals.Bull. Am. Mus. Nat. Hist. 132: 1–126.Google Scholar
  51. Van Valen, L. (1971). Toward the origin of artiodactyls.Evolution 25: 523–529.Google Scholar
  52. Wheeler, W. C. (1992). Extinction, sampling, and molecular phylogenetics. In:Extinction and Phylogeny, M. J. Novacek and Q. D. Wheeler, eds., pp. 205–215, Columbia University Press, New York.Google Scholar
  53. Zharkikh, A., and Li, W.-H. (1992a). Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. I. Four taxa with a molecular clock.Mol. Biol. Evol. 9: 1119–1147.PubMedGoogle Scholar
  54. Zharkikh, A., and Li, W.-H. (1992b). Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. II. Four taxa without a molecular clock.J. Mol. Evol. 35: 356–366.PubMedGoogle Scholar
  55. Zharkikh, A., and Li, W.-H. (1993). Inconsistency of the maximum-parsimony method: The case of five taxa with a molecular clock.Syst. Biol. 42: 113–125.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Hervé Philippe
    • 1
  • Emmanuel Douzery
    • 2
  1. 1.Laboratoire de Biologie Cellulaire (URA CNRS 1134 D)Université Paris-SudOrsay CedexFrance
  2. 2.Laboratoire de Paléontologie, Institut des Sciences de l'Evolution (URA 327 CNRS)USTLMomtpellier Cedex 05France

Personalised recommendations