Advertisement

Journal of Mammalian Evolution

, Volume 2, Issue 1, pp 37–55 | Cite as

Cytochromeb gene of marine mammals: Phylogeny and evolution

  • David M. Irwin
  • Úlfur Árnason
Article

Abstract

The DNA sequences of the mitochondrial cytochromeb gene of marine mammals (Cetacea, Pinnipedia, Sirenia) were compared with cytochromeb genes of terrestrial mammals including the semiaquatic hippopotamus. The comparison included 28 sequences, representing 22 families and 10 orders. The dugong (order Sirenia) sequence associated with that of the elephant, supporting the Tethytheria clade. The fin whale and dolphin (order Cetacea) sequences are more closely related to those of the artiodactyls, and the comparison suggests that the hippopotamus may be the extant artiodactyl species that is most closely related to the cetaceans. The seal sequence may be more closely related to those of artiodactyls, cetaceans, and perissodactyls than to tethytheres, rodents, lagomorphs, or primates. The cytochromeb proteins of mammals do not evolve at a uniform rate. Human and elephant cytochromeb amino acid sequences were found to evolve the most rapidly, while those of myomorph rodents evolved slowest. The cytochromeb of marine mammals evolves at an intermediate rate. The pattern of amino acid substitutions in marine mammals is similar to that of terrestrial mammals.

Key Words

mitochondrial DNA cetaceans tethytherians pinnipeds sirenians molecular phylogeny cytochromeb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anderson, S., Baniker, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome.Nature 290: 457–465.PubMedGoogle Scholar
  2. Anderson, S., deBruijn, M. H. L., Coulson, A. R., Eperon, I. C., Sanger, F., and Young, I. G. (1982). Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome.J. Mol. Biol. 156: 683–717.Google Scholar
  3. Árnason, Ú., and Johnsson, E. (1992). The complete sequence of the mitochondrial DNA of the harbor seal,Phoca vitudina.J. Mol. Evol. 34: 493–505.PubMedGoogle Scholar
  4. Árnason, Ú., and Ledje, C. (1993). The use of highly repetitive DNA for resolving cetacean and pinniped phylogenies. In:Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 74–80. Springer-Verlag, New York.Google Scholar
  5. Árnason, Ú. and Widegren B. (1986). Pinniped phylogeny enlightened by molecular hybridization using highly repetitive DNA.Mol. Biol. Evol. 3: 356–365.Google Scholar
  6. Árnason, Ú., Gullberg, A., and Widegren, B. (1991). The complete sequence of the mitochondrial DNA of the fin whale,Balaenoptera physalus.J. Mol. Evol.,33: 556–568.PubMedGoogle Scholar
  7. Beintema, J. J., Schüller, C., Irie, M., and Carsana, A. (1988). Molecular evolution of the ribonuclease superfamily.Prog. Biophys. Mol. Biol. 51: 165–192.PubMedGoogle Scholar
  8. Bibb, M. J., Van Etten R. A., Wright, C. T., Walberg, M. W., and Clayton, D. A. (1982). Sequence and gene organization of mouse mitochondrial DNA.Cell 26: 167–180.Google Scholar
  9. Benton, M. J. (1990). Phylogeny of the major tetrapod groups: morphological data and divergence dates.J. Mol. Evol. 30: 409–424.PubMedGoogle Scholar
  10. Bulmer, M., Wolfe, K. H., and Sharp, P. M. (1991). Synonymous nucleotide substitution rates in mammalian genes: Imolications for the molecular clock and the relationship of mammalian orders.Proc. Natl. Acad. Sci. USA 88: 5974–5978.PubMedGoogle Scholar
  11. Czelusniak, J., Goodman, M., Koop, B. F., Tagle, D. A., Shoshani, J., Braunitzer, G., Kleinschmidt, T. K., De Jong W. W., and Matsuda, G. (1990a). Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of Eutheria. In:Current Mammalogy, Vol. 2, H. H. Genoways, ed., pp. 545–572, Plenum, New York.Google Scholar
  12. Czelusniak, J., Goodman, M., Moncrief, N. D., and Kehoe, S. M. (1990b). Maximum parsimony approach to construction of evolutionary trees from aligned homologous sequences.Methods Enzymol. 183: 601–615.PubMedGoogle Scholar
  13. De Jong, W. W., Zweers A., and Goodman, M. (1981). Relationship of aardvark to elephants, hyraxes and sea cows from α-crystallin sequences.Nature 292: 117–119.Google Scholar
  14. De Jong, W. W., Leunissen, J. A. M., and Wistow, G. J. (1993) Eye lens crystallins and the phylogeny of placental orders: Evidence for a macroscelid-paenungulate clade. In:Mammal Phylogemy; Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds. pp. 5–12, Springer-Verlag, New York.Google Scholar
  15. Desjardins, P., and Morais, R. (1990). Sequence and gene organization of the chicken mitochondrial genome: A novel gene order in higher vertebrates.J. Mol. Biol. 212: 599–634.PubMedGoogle Scholar
  16. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap.Evolution 39: 783–791.Google Scholar
  17. Felsenstein, J. (1988). Phylogenies from molecular sequences: Inference and reliability.Annu. Rev. Genet. 22: 521–565.PubMedGoogle Scholar
  18. Felsenstein, J. (1993).PHYLIP. Phylogenetic Inference Package, Program and Documentation, Version 3.5, University of Washington, Seattle.Google Scholar
  19. Gadaleta, G., Pepe, G., De Candia, G., Quagliariello, C., Sbisà, E., and Saccone, C. (1989). The complete nucleotide sequence of theRattus norvegicus mitochondrial genome: Cryptic signals revealed by comparative analysis between vertebrates.J. Mol. Evol. 28: 497–516.PubMedGoogle Scholar
  20. Gentry, A. W., and Hooker, J. J. (1988). The phylogeny of Artiodactyla. In:The Phylogeny of the Tetrapods, Vol. 2. Mammals, M. J. Benton, ed., pp. 235–272. Clarendon Press, Oxford.Google Scholar
  21. Gingerich, P. D., Wells, N. A., Russell, D. E., and Shaw, S. M. (1983). Origin of whales in epicontinental remnant seas: New evidence from the early Eocene of Pakistan,Science 220: 403–406.Google Scholar
  22. Gingerich, P. D., Smith, B. H., and Simons, E. L. (1990). Hind limbs of EoceneBasilosaurus: Evidence of feet in whales.Science 249: 154–157.Google Scholar
  23. Graur, D. (1993a). Molecular phylogeny and the higher classification of eutherian mammals.Trends Ecol. Evol. 8: 141–147.Google Scholar
  24. Graur, D. (1993b) Towards a molecular resolution of the ordinal phylogeny of the eutherian mammals.FEBS Lett. 325: 152–159.PubMedGoogle Scholar
  25. Graur, D., Hide, W. A. and Li, W.-H. (1991). Is the guinea pig a rodent?Nature 351: 649–652.PubMedGoogle Scholar
  26. Holmes, E. C. (1991). Different rates of substitution may produce different phylogenies of the eutherian mammals.J. Mol. Evol. 33: 209–215.PubMedGoogle Scholar
  27. Howell, N. (1989). Evolutionary conservation of protein regions in the proton-motive cytochromeb and their possible roles in redox catalysis.J. Mol. Evol. 29: 157–169.PubMedGoogle Scholar
  28. Irwin, D. M., and Wilson, A. C. (1993). Limitations of molecular methods for establishing the phylogeny of mammals, with special reference to the position of elephants. In:Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 257–267, Springer-Verlag, New York.Google Scholar
  29. Irwin, D. M., Sidow, A., White, R. T., and Wilson, A. C. (1989). Multiple genes for ruminant lysozymes. In:The Immune Response to Structurally Defined Proteins: The Lysozyme Model., S. J. Smith-Gill and E. E. Sercarz, eds., pp. 73–85, Adenine Press, Schenectady, NY.Google Scholar
  30. Irwin, D. M. Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochromeb gene of mammals.J. Mol. Evol. 32: 128–144.PubMedGoogle Scholar
  31. Li, W.-H., Gouy, M., Sharp, P. M., O'Huigin, C., and Yang, Y.-W. (1990). Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks.Proc. Natl. Acad. USA 87: 6703–6707.Google Scholar
  32. Luckett, W. P., and Hartenberger, J.-L. (1993). Monophyly or paraphyly of the order Rodentia: Possible conflicts between morphological and molecular interpretations.J. Mammal. Evol. 1: 127–147.Google Scholar
  33. Ma, D.-P., Zharkikh, A., Graur, D., VandeBerg, J. L., and Li, W.-H. (1993). Structure and evolution of opossum, guinea pig, and porcupine cytochromeb genes.J. Mol. Evol. 36: 327–334.PubMedGoogle Scholar
  34. Martin, A. P., and Palumbi, S. R. (1993). Body size, metabolic rate, generation time, and the molecular clock.Proc. Natl. Acad. Sci. USA 90: 4087–4091.PubMedGoogle Scholar
  35. McKerna M. C. (1987). Molecular and morphological analysis of higher-level mammalian interrelationships. In:Molecules and Morphology in Evolution: Conflict or Compromise? C. Patterson, ed., pp. 55–94. Cambridge University Press, Cambridge.Google Scholar
  36. Mindell, D. P., and Honeycutt, R. L. (1990). Ribosomal RNA in vertebrates: Evolution and phylogenetic applications.Annu. Rev. Ecol. Syst. 21: 541–566.Google Scholar
  37. Nei, M. (1991). Relative efficiencies of different tree-making methods for molecular data. In:Phylogenetic Analysis of DNA Sequences, M. M. Miyamoto and J. Cracraft, eds, pp. 90–128, Oxford University Press, New York.Google Scholar
  38. Novacek, M. J. (1989). Higher mammal phylogeny: The morphological-molecular synthesis. In:The Hierarchy of Life, B. Fernholm, K. Bremer, and H. Jörnvall, eds., pp. 421–435, Elsevier, Amsterdam.Google Scholar
  39. Novacek, M. J. (1992). Mammalian phylogeny: Shaking the tree.Nature 356: 121–125.PubMedGoogle Scholar
  40. Pesole, G., Sbisa, E., Mlignotte, F., and Saccone, C. (1991). The branching order of mammals: Phylogenetic trees inferred from nuclear and mitochondrial molecular data.J. Mol. Evol. 33: 537–542.PubMedGoogle Scholar
  41. Prager, E. M., and Wilson, A. C. (1988). Ancient origin of lactalbumin from lysozyme: Analysis of DNA and amino acid sequences,J. Mol. Evol. 27: 326–335.PubMedGoogle Scholar
  42. Prothero, D. R. (1993). Ungulate phylogeny: Molecular vs. morphological evidence. In:Mammal Phylogeny: Placentals. F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 173–181. Springer-Verlag, New York.Google Scholar
  43. Prothero, D. R., Manning, E. M., and Fischer, M., (1988). The phylogeny of ungulates. In:The Phylogeny and Classification of the Tetrapods, Vol. 2 M. J. Benton, ed., pp. 201–234. Clarendon, Oxford.Google Scholar
  44. Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 4: 406–425.PubMedGoogle Scholar
  45. Shoshani, J. (1986). Mammalian phylogeny: Comparison of morphological and molecular results.Mol. Biol. Evol. 3: 222–242.PubMedGoogle Scholar
  46. Springer, M. S., and Kirsch, J. A. W. (1993). A molecular perspective on the phylogeny of placental mammals based on mitochondrial 12S rDNA sequences.J. Mammal. Evol. 1: 149–166.Google Scholar
  47. Stanhope, M. J., Bailey, W. J., Czelusniak, J. Goodman, M., Si, J.-S., Nickerson, J., Sgouros, J. G., Singer, G. A. M., and Kleinschmidt, T. D. (1993). A molecular view of primate supraordinal relationships from the analysis of both nucleotide and amino acid sequences. In:Primates and Their Relatives in Phylogenetic Perspective R. D. E. MacPhee, ed., pp. 251–292, Plenum Press, New York.Google Scholar
  48. Stewart, C.-B. (1993). The powers and pitfalls of parsimony.Nature 361: 603–607.PubMedGoogle Scholar
  49. Swofford, D. L. (1993).PAUP: Phylogenetic Analysis Using Parsimony, Program and Documentation. Version 3. 1. 1.. Illinois Natural History Survey, Champaign.Google Scholar
  50. Swofford, D. L., and Olsen, G. L. (1990). Phylogeny reconstruction. In:Molecular Systematics, D. M. Hillis and C. Moritz, eds., pp. 411–501, Sinauer Associates, Sunderland, MA.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • David M. Irwin
    • 1
    • 2
  • Úlfur Árnason
    • 3
  1. 1.Department of Clinical BiochemistryUniversity of TorontoTorontoCanada
  2. 2.Banting and Best Diabetes CentreUniversity of TorontoTorontoCanada
  3. 3.Department of Genetics, Division of Evolutionary Molecular SystematicsUniversity of LundLundSweden

Personalised recommendations