Communications in Mathematical Physics

, Volume 103, Issue 1, pp 105–119 | Cite as

Unitary representations of the Virasoro and super-Virasoro algebras

  • P. Goddard
  • A. Kent
  • D. Olive
Article

Abstract

It is shown that a method previously given for constructing representations of the Virasoro algebra out of representations of affine Kac-Moody algebras yields the full discrete series of highest weight irreducible representations of the Virasoro algebra. The corresponding method for the super-Virasoro algebras (i.e. the Neveu-Schwarz and Ramond algebras) is described in detail and shown to yield the full discrete series of irreducible highest weight representations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goddard, P., Kent, A., Olive, D.: Virasoro algebras and coset space models. Phys. Lett.152 B, 88 (1985)Google Scholar
  2. 2.
    Polyakov, A.M.: Conformal symmetry of critical fluctuations. JETP Lett.12, 381 (1970);Google Scholar
  3. 2.a
    Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B241, 333 (1980)Google Scholar
  4. 3.
    Friedan, D., Qiu, Z., Shenker, S.: In: Vertex operators in mathematics and physics. Lepowsky, J. et al. (eds.). MSRI publications No. 3, Berlin, Heidelberg, New York: Springer 1984, p. 419; Conformal invariance unitarity and critical exponents in two dimensions. Phys. Rev. Lett.52, 1575 (1984)Google Scholar
  5. 4.
    Goddard, P., Olive, D.: Kac-Moody algebras, conformal symmetry and critical exponents. Nucl. Phys. B257 [FS14], 226 (1985)Google Scholar
  6. 5.
    Friedan, D., Qiu, Z., Shenker, S.: Superconformal invariance in two dimensions and the tricritical Ising model. Phys. Lett.151 B, 37 (1985)Google Scholar
  7. 6.
    Ramond, P.: Dual theory for free fermions. Phys. Rev. D3, 2415 (1971)Google Scholar
  8. 7.
    Neveu, A., Schwarz, J.H.: Factorizable dual model of pions. Nucl. Phys. B31, 86 (1971); Quark model of dual pions. Phys. Rev. D4, 1109 (1971)Google Scholar
  9. 8.
    Sugawara, H.: A field theory of currents. Phys. Rev.170, 1659 (1968)Google Scholar
  10. 8.a
    Sommerfield, C.: Currents as dynamical variables. Phys. Rev.176, 2019 (1968)Google Scholar
  11. 8.b
    Coleman, S., Gross, D., Jackiw, R.: Fermion avatars of the Sugawara model. Phys. Rev.180, 1359 (1969);Google Scholar
  12. 8.c
    Bardakci, K., Halpern, M.: New dual quark models. Phys. Rev. D3, 2493 (1971)Google Scholar
  13. 8.d
    Dashen, R., Frishman, Y.: Four-fermion interactions and scale invariance. Phys. Rev. D11, 2781 (1975)Google Scholar
  14. 9.
    Kac, V.G.: Infinite dimensional Lie algebras. Boston: Birkhäuser 1983Google Scholar
  15. 10.
    Goddard, P.: Kac-Moody algebras: representations and applications. DAMTP preprint 85/7Google Scholar
  16. 11.
    Olive, D.: Kac-Moody algebras: an introduction for physicists. Imperial College preprint TP/84–85/14Google Scholar
  17. 12.
    Rocha-Caridi, A.: In: Vertex operators in mathematics and physics. Lepowsky, J. et al. (eds.). MSRI publications No. 3, p. 451. Berlin, Heidelberg, New York: Springer 1984Google Scholar
  18. 13.
    Frenkel, I.B., Kac, V.G.: Basic representations of Lie algebras and dual resonance models. Invent. Math.62, 23 (1980)Google Scholar
  19. 14.
    Segal, G.: Unitary representations of some infinite dimensional groups. Commun. Math. Phys.80, 301 (1981)Google Scholar
  20. 15.
    Goddard, P., Olive, D.: In: Vertex operators in mathematics and physics. Lepowsky, J. et al. (eds.). MSRI publications No. 3, p. 51. Berlin, Heidelberg, New York: Springer 1984Google Scholar
  21. 16.
    Feigin, B.L., Fuchs, D.B.: Funct. Anal. Appl.17, 241 (1983)Google Scholar
  22. 17.
    Kent, A.: Papers in preparationGoogle Scholar
  23. 18.
    Bardakci, K., Halpern, M.B.: New dual quark models. Phys. Rev. D3, 2493 (1971)Google Scholar
  24. 19.
    Goddard, P., Kent, A., Olive, D.: In preparationGoogle Scholar
  25. 20.
    Kac, V., Todorov, I.: Superconformal current algebras and their unitary representations. Commun. Math. Phys.102, 337–347 (1985)Google Scholar
  26. 21.
    Altschuler, D.: University of Geneva preprint (1985) UGVA-DPT 1985/06-466Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • P. Goddard
    • 1
  • A. Kent
    • 1
  • D. Olive
    • 2
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK
  2. 2.Blackett LaboratoryImperial CollegeLondonUK
  3. 3.Enrico Fermi InstituteUniversity of ChicagoChicagoUSA

Personalised recommendations