Advertisement

Acta Mechanica

, Volume 158, Issue 1–2, pp 121–125 | Cite as

Slip flow past a stretching surface

  • H. I. Andersson
Note

Summary

The slip-flow of a Newtonian fluid past a linearly stretching sheet is considered. The partial slip is controlled by a dimensionless slip factor, which varies between zero (total adhesion) and infinity (full slip). An exact analytical solution of the governing Navier-Stokes equation is found, which is formally valid for all Reynolds numbers.

Keywords

Dynamical System Reynolds Number Fluid Dynamics Transport Phenomenon Newtonian Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Crane, L. J.: Flow past a stretching plate. Z. Angew. Math. Phys.21, 645–647 (1970).Google Scholar
  2. [2]
    Chiam, T. C.: Micropolar fluid flow over a stretching sheet. ZAMM62, 565–568 (1982).Google Scholar
  3. [3]
    Andersson, H. I., Dandapat, B. S.: Flow of a power-law fluid over a stretching sheet. Stability Appl. Anal. Continuous Media1, 339–347 (1991).Google Scholar
  4. [4]
    Siddappa, B., Khapate, B. S.: Rivlin-Ericksen fluid flow past a stretching plate. Rev. Roum. Sci. Techn.-Méc. Appl.21, 497–505 (1976).Google Scholar
  5. [5]
    Siddappa, B., Abel, S.: Non-Newtonian flow past a stretching plate. Z. Angew. Math. Phys.36, 890–892 (1985).Google Scholar
  6. [6]
    Rajagopal, K. R., Na, T. Y., Gupta, A. S.: Flow of a viscoelastic fluid over a stretching sheet. Rheol. Acta23, 213–215 (1984).Google Scholar
  7. [7]
    Beavers, G. S., Joseph, D. D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech.30, 197–207 (1967).Google Scholar
  8. [8]
    Laplace, P., Arquis, É.: Boundary layer over a slotted plate. Eur. J. Mech. B/Fluids17, 331–355 (1998).Google Scholar
  9. [9]
    Miksis, M. J., Davis, S. H.: Slip over rough and coated surfaces. J. Fluid Mech.273, 125–139 (1994).Google Scholar
  10. [10]
    Gad-el-Hak, M.: The fluid mechanics of microdevices—The Freeman scholar lecture. ASME J. Fluids Engng121, 5–33 (1999).Google Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • H. I. Andersson
    • 1
  1. 1.Department of Applied Mechanics, Thermodynamics and Fluid DynamicsThe Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations