International Journal of Biometeorology

, Volume 14, Issue 4, pp 323–342 | Cite as

Vital issues in computing decompression schedules from fundamentals

II. Diffusion Versus Blood Perfusion in Controlling Blood: Tissue Exchange
  • B. A. Hills


The review has been continued of the vital issues which must be answered in deriving equations for predicting the imminence of decompression sickness from fundamental physical and physiological reasoning. In this part (II), the evidence is considered for deciding whether diffusion or blood perfusion limits the rate of uptake of inert gases by the tissue type(s) responsible for marginal symptoms. This is also discussed with regard to tissues of known anatomic identity relevant to estimations of the uptake of anaesthetic agents and the measurement of local circulation rates. While this data would indicate that neither process can be ignored, the best correlation of decompression data which can be isolated from the effects of the other vital issues would appear to be offered by bulk diffusion models. The conventional method for computing decompression schedules can then be considered as a calculation technique by which hypothetical tissues of longer "half-time" must be invoked empirically in order to simulate deeper penetration of extravascular tissue by gas.


Decompression Sickness Blood Perfusion Deep Penetration Bulk Diffusion Circulation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Dies ist die Fortsetzung der Übersicht über die Beantwortung der Grundfragen zur Vorhersage drohender Dekompressionskrankheit anhand physikalischer und physiologischer Überlegungen. In diesem Teil wird der Beweis für die Entscheidung berücksichtigt, ob Diffusion oder Blutperfusion die Aufnahmerate inerter Gase durch Gewebe, die für Grenzsymptome verantwortlich sind, limitiert. Dies wird auch unter Bezug auf anatomisch gleiche Gewebe besprochen, was wichtig ist bei der Schätzung der Aufnahme von Anästhetika und der Messung lokaler Zirkulationsraten. Während die Unterlagen andeuten, dass weder der eine noch der andere Vorgang vernachlässigt werden kann, scheinen sich die besten Korrelationen der Dekompressionswerte, die sich aus den Wirkungen anderer vitaler Vorgänge ergeben, über Mengen-Diffusionsmodelle anzubieten. Die konventionale Methode zur Berechnung der Dekompressionszeiten lässt sich dann als Berechnungstechnik betrachten, bei der hypothetische Gewebe mit langer "Halbzeit" empirisch herangezogen werden müssen, um tiefere Gaspenetration extravaskulärer Gewebe zu simulieren.


Il s'agi ici de la suite de la compilation en vue de répondre au problème de la prévision des maux de décompression en partant de raisonnements physiques et physiologiques. Dans cette deuxième partie, on considère les preuves apportées à l'appui de 2 hypothèses de la limitation de l'absorption des gaz inertes par les tissus, absorption responsable des syptômes marginaux: la diffusion ou la perfusion sanguine. On discute également les preuves apportées en regard d'autre tissus anatomiquement semblables, ce qui est important lors de l'estimation de l'absorption des narcotiques et de la mesure du taux local de circulation. Bien que les chiffres analysés laissent à penser que ni l'un ni l'autre de ces processus ne puisse être négligé, il semble que les meilleures corrélations aux valeurs de décompression sont offertes par les modèles de diffusion quantitative, valeurs qui proviennent d'autres processus vitaux. La méthode conventionnelle pour le calcul des temps de décompression peut alors être considérée comme une technique dans laquelle des tissus hypothétiques ayant un long demi-temps doivent être considérés empiriquement pour simuler une pénétration plus profonde des gaz dans des tissus extra-vasculaires.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ARNOLD, J.H. (1930): Diffusion, II. Kinetic theory of diffusion in liquid systems. J.Amer.Chem.Soc., 52: 3937–3942.Google Scholar
  2. BARCROFT, H. (1963): Circulation in skeletal muscle. In: Handbook of Physiology, Sect. II, vol. 2. W.F.Hamilton (ed.), Amer. Physiol.Society, Washington, D.C., 1353–1438.Google Scholar
  3. BARLOW, T.E., HAIGH, A.L. and WALDER, D.N. (1959): Dual circulation in skeletal muscle. J.Physiol. (Lond.), 149: 18–19.Google Scholar
  4. BARLOW, T.E., HAIGH, A.L. and WALDER, D.N. (1961): Evidence for two vascular pathways in skeletal muscle. Clin.Sci., 20: 367–385.PubMedGoogle Scholar
  5. BEHNKE, A.R. (1951): Decompression sickness following exposure to high pressures. In: Decompression Sickness. J.F.Fulton (ed.), Saunders, Philadelphia, 53–89.Google Scholar
  6. BOYCOTT, A.E., DAMANT, G.C.C. and HALDANE, J.S. (1908): The prevention of compressed-air illness. J.Hyg. (Lond.), 8:342–443.Google Scholar
  7. CAMPBELL, J.A. and HILL, L. (1933): Studies in saturation of tissues with gaseous N2. Quant. J. exp. Physiol., 23: 219–227.Google Scholar
  8. COOK, S.F. (1951): Role of exercise, temperature, drugs and water balance in decompression sickness. In: Decompression Sickness. J.F. Fulton (ed.), Saunders, Philadelphia, 223–242.Google Scholar
  9. DICK, D.A.T. (1959): The rate of diffusion of water into the protoplasm of living cells. Exp.cell.Res., 17: 5–12.PubMedGoogle Scholar
  10. DIETER, E. (1954): Über das Vorkommen arteriovenöser Anastomosen im Skelettmuskel.Pflügers Arch.ges.Physiol., 258: 470–474.Google Scholar
  11. DUFFNER, G.J., SNYDER, J.F. and SMITH, L.L. (1959): US Navy Exp. Diving Unit Res. resp. 3-59 (project NS 186), Washington.Google Scholar
  12. FENICHEL, I.R. and HOROWITZ, S.B. (1963): The transport of nonelectrolytes in muscle as a diffusional process in cytoplasm. Acta Physiol.scand., 60: suppl. 221, 1–63.Google Scholar
  13. FERRIS, E.B. and ENGEL, G.L. (1951): The clinical nature of high altitude decompression sickness. In: Decompression Sickness, J.F.Fulton (ed.), Saunders, Philadelphia, 4–52.Google Scholar
  14. FORSTER, R.E. (1964): Diffusion factors in gases and liquids. In: The Uptake and Distribution of Anesthetic Agents. E.M.Papper and R.J.Kitz (ed.), McGraw-Hill, New York, 20–29.Google Scholar
  15. GRIFFITHS, P.D. (1969): Clinical manifestations and treatment of decompression sickness in compressed air workers. In: The Physiology and Medicine of Diving. P.B.Bennett and D.H.Elliott (ed.), Baillere, Tindall and Cassell, London, 451–463.Google Scholar
  16. HARRELSON, J.H. and HILLS, B.A. (1970): Changes in bone marrow pressure during hyperbaric exposure. Aerospace Med., 41: 1018–1021.Google Scholar
  17. HAWKINS, J.A., SHILLING, C.W. and HANSEN, R.A. (1935): Suggested change in calculating decompression tables for diving. Nav. Med.Bull., Washington, 33: 327–338.Google Scholar
  18. HEMPLEMAN, H.V. (1952): Investigation into the decompression tables; III. A new theoretical basis for the calculation of decompression tables. Med.Res. Council (U.K.), Royal Naval Personnel Res.Comm. report UPS 131.Google Scholar
  19. HEMPLEMAN, H.V. (1967): Decompression procedures for deep, open sea operations. In: Proceedings Third Symp. Underwater Physiology. C.J.Lambertsen (ed.), Williams and Wilkins, Baltimore, 255–266.Google Scholar
  20. HILL, A.V. (1928): Diffusion of O2 and lactic acid through tissues. Proc. roy. Soc. B, 104: 39–96.Google Scholar
  21. HILLS, B.A. (1966): A Thermodynamic and Kinetic Approach to Decompression Sickness. Libraries Board of S. Australia, Adelaide.Google Scholar
  22. HILLS, B.A. (1967): Diffusion versus blood perfusion in limiting the rate of uptake of inert non-polar gases by skeletal rabbit muscle. Clin.Sci., 33: 67–87.PubMedGoogle Scholar
  23. HILLS, B.A. (1968): Linear bulk diffusion into heterogeneous tissue. Bull. Math.Biophys., 30: 47–59.PubMedGoogle Scholar
  24. HILLS, B.A. (1969a): Thermodynamic decompression: an approach based upon the concept of phase equilibration in tissue. In: The Physiology and Medicine of Diving and Compressedair Work. P.B.Bennett and D.H.Elliott (ed.), Baillère, Tindall and Cassell, London, 317–356.Google Scholar
  25. HILLS, B.A. (1969b): Radial bulk diffusion into heterogeneous tissue. Bull. Math.Biophys., 31: 25–34.Google Scholar
  26. HILLS, B.A. (1969c): A quantitative correlation of conditions for the occurrence of decompression sickness for aerial and underwater exposures. Rev.Subaqua. Physiol., 1: 249–254.Google Scholar
  27. HILLS, B.A. (1969d): The time course for the uptake of inert gases by the tissue type responsible for marginal symptoms of decompression sickness. Rev.Subaqua.Physiol.,1:255–261.Google Scholar
  28. HILLS, B.A. (1970a): Vital issues in computing decompression schedules from fundamentals. I. Critical supersaturation versus phase equilibration. Int.J.Biometeor., 14: 111–131.Google Scholar
  29. HILLS, B.A. (1970b): An osmotic hypothesis for aseptic bone necrosis in caisson workers. Med.Res.Council (U.K.) (in press).Google Scholar
  30. HILLS, B.A. (1970c): An assessment of the expression C = Q [1-exp(-PS/Q)] for estimating capillary permeabilities. Phys. Med. Biol. (in press).Google Scholar
  31. HILLS, B.A. (1970d): Respiration of tissue as a medium of heterogeneous permeability. Bull.Math.Biophys., 32: 219–235.PubMedGoogle Scholar
  32. HYMAN, C., ROSELL, S., ROSEN, A., SONNENSCHEIN, R.R. and UNVAS, B. (1959): Effects of alterations of total muscular blood flow on local tissue clearance of radio-iodide in the cat.Acta Physiol.Scand., 46: 358–374.PubMedGoogle Scholar
  33. INGVAR, D.H. and LASSEN, N.A. (1962): Regional blood flow of the cerebral cortex determined by krypton. Acta Physiol.Scand., 54: 325.Google Scholar
  34. JOHNSON, J.A., CAVERT, H.M. and LIFSON, N. (1952): Kinetics concerned with distribution of isotopic water in isolated perfused dog heart and skeletal muscle. Amer. J. Physiol., 171: 687–693.PubMedGoogle Scholar
  35. JONES, H.B. (1951): Gas exchange and blood-tissue perfusion factors in various body tissues. In: Decompression Sickness. J.F.Fulton (ed.), Saunders, Philadelphia, 278–321.Google Scholar
  36. KELLER, H. and BUHLMANN, A.A. (1965): Deep diving and short decompression by breathing mixed gases. J.appl.Physiol., 20:1267–1270.Google Scholar
  37. KETY, S.S. (1948): Measurement of regional circulation by the local clearance of radioactive sodium. Amer.Heart J., 38: 321–328.Google Scholar
  38. KETY, S.S. (1951): Theory and applications of exchange of inert gases at lungs and tissue. Pharm.Rev., 3: 1–41.PubMedGoogle Scholar
  39. KETY, S.S. and SCHMIDT, C.F. (1945): The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Amer.J.Physiol., 143: 53–56.Google Scholar
  40. KROGH, A. (1918): The rate of diffusion of gases through animal tissues, with some remarks upon the coefficient of invasion. J. Physiol. (Lond.), 52: 391–408.Google Scholar
  41. LAMBERTSEN, C.J. and OWEN, S.G. (1960): Continuous rate sampling modification of nitrous oxide method for cerebral bloodflow in man. In: Methods in Medical Research. H.B.Bruner (ed.), Year Book Publ., Chicago, 8: 262–269.Google Scholar
  42. LASSEN, N.A. and KLEE, A. (1965): Cerebral blood flow determined by saturation and desaturation with krypton: evaluation of the inert gas method of Kety and Schmidt. Circ.Res., 16: 26–32.PubMedGoogle Scholar
  43. LASSEN, N.A. and MUNCK, O. (1954): The cerebral blood flow in man determined by the use of radioactive krypton. Acta Physiol. scand., 33: 30–49.Google Scholar
  44. LONGMUIR, I.S. (1966): Tissue oxygen transport. In: Hyperbaric Medicine, I.W.Brown and B.G.Cox (ed.), Nat. Res. Council, Washington, 46–51.Google Scholar
  45. McCALLUM, R.I. and WALDER, D.N. (1966): Bone lesions in compressed air workers. J.Bone Joint Surg., 48B: 207–235.Google Scholar
  46. MORALES, M.F. and SMITH, R.E. (1944): The physiological factors which govern inert gas exchange. Bull.Math.Biophys., 6: 141–147.Google Scholar
  47. MORALES, M.F. and SMITH, R.E. (1945a): The physiological factors which govern inert gas exchange. Bull.Math.Biophys., 7: 47–51.Google Scholar
  48. MORALES, M.F. and SMITH, R.E. (1945b): A note on the physiological arrangement of tissue. Bull.Math.Biophys., 7: 99–106.Google Scholar
  49. PERL, W., RACKOW, H., SALANITRE, E., WOLF, G.L. and EPSTEIN, R.M. (1965): Intertissue diffusion effect for inert fat-soluble gases. J.appl.Physiol., 20: 621–627.PubMedGoogle Scholar
  50. PERRY, J.H. (1950): Chemical Engineers' Handbood. 3rd ed., McGraw-Hill, New York, 540–541.Google Scholar
  51. PITTINGER, C.B., FEATHERSTONE, R.M., STICKLEY, E., LEVY, L., and CULLEN, S.C. (1956): Observations on the kinetics of transfer of xenon and chloroform between blood and brain in the dog. Anesthesiology, 17: 523–530.PubMedGoogle Scholar
  52. RACKOW, H., SALANITRE, E., EPSTEIN, R.M., WOLF, G.L. and PERL, W. (1965): Simultaneous uptake of N2O and cyclopropane in man as a test of the compartmental model. J.Appl.Physiol., 20: 611–620.PubMedGoogle Scholar
  53. RASHBASS, C. (1955): Investigation into the decompression tables. VI. New tables. Med.Res.Council (U.K.), Royal Naval Personn.Res.rep. UPS, 151.Google Scholar
  54. RENKIN, E.M. (1955): Effects of blood flow on diffusion kinetics in isolated, perfused hindlegs of cats. A double circulation hypothesis. Amer.J.Physiol., 183: 125–136.PubMedGoogle Scholar
  55. RENKIN, E.M. (1959): Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Amer.J.Physiol., 197: 1205–1210.PubMedGoogle Scholar
  56. RENKIN, E.M. (1967): Blood flow and transcapillary exchange in skeletal and cardiac muscle. Proceedings International Symposium on Coronary Circulation and Energetics of the Myocardium. G.Marchetti and B.Taccardi (ed.), Karger, Basel, 18–29.Google Scholar
  57. ROUGHTON, F.J.W. (1952): Diffusion and chemical reaction velocity in cylindrical and spherical systems of physiological interest. Proc.roy.Soc., B, 140: 203–221.Google Scholar
  58. SCHREINER, H.R. (1968): Safe ascent after deep dives. Rev.Subaqua. Physiol., 1: 28–37.Google Scholar
  59. SCHREINER, H.R. and KELLEY, P.L. (1970): A pragmatic view of decompression. In: Proc.Fourth Symp.Underwater Physiology. C.J.Lambertsen (ed.), Academic Press, New York, in press.Google Scholar
  60. SEGRE, G. (1965): Compartmental systems and generating functions.Bull. Math.Biophys., 27: 125–131.PubMedGoogle Scholar
  61. SHEWMON, P. (1963): Diffusion in Solids. McGraw-Hill, New York, 164–170.Google Scholar
  62. SHOUP, C.S. (1929): The respiration of luminous bacteria and the effect of oxygen tension upon oxygen consumption. J.gen.Physiol., 13: 27–45.Google Scholar
  63. THOMPSON, A.M., CAVERT, H.M. and LIFSON, N. (1958): Kinetics of distribution of D2O and antipyrine in isolated perfused rat liver. Amer.J.Physiol., 192: 531–537.PubMedGoogle Scholar
  64. VAN LIEW, H.D. (1968): Coupling of diffusion and perfusion in gas exit from subcutaneous pockets in rats. Amer. J. Physiol., 214:1176–1185.PubMedGoogle Scholar
  65. WATSON, G.N. (1944): Theory of Bessel Functions. 2nd ed., Cambridge University Press, Cambridge.Google Scholar
  66. WORKMAN, R.D. (1969): American decompression theory. In: The Physiology and Medicine of Diving. P.B.Bennett and D.H.Elliott (ed.), Baillere, Tindall and Cassell, London, 252–290.Google Scholar
  67. YARBOROUGH, O.D. (1937): Calculation of Decompression Tables. US Navy Exp. Diving Unit Res. rep. Washington.Google Scholar
  68. ZWEIFACH, B. (1949): Basic mechanisms in peripheral vascular homeostasis. Trans. 3rd Conf. on Factors Influencing Blood Pressure. B.W.Zweifach and E.Shorr (ed.), Josiah Macy Foundation, New York.Google Scholar

Copyright information

© Swets & Zeitlinger N.V. 1970

Authors and Affiliations

  • B. A. Hills
    • 1
  1. 1.Department of SurgeryDuke University Medical CenterDurhamUSA

Personalised recommendations