Advertisement

Mathematische Annalen

, Volume 282, Issue 4, pp 645–666 | Cite as

Coates-Wiles towers in dimension two

  • David Grant
Article
  • 47 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthaud, N.: On Birch and Swinnerton-Dyer's conjecture for elliptic curves with complex multiplication. I. Compos. Math.37, 209–232 (1978)Google Scholar
  2. 2.
    Coates, J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math.39, 223–251 (1977)Google Scholar
  3. 3.
    Grant, D.: Theta functions and division points on abelian varieties of dimension two. Thesis, M.I.T. 1985Google Scholar
  4. 4.
    Gupta, R.: Ramification in the Coates-Wiles tower. Invent. Math.81, 59–69 (1985)Google Scholar
  5. 5.
    Hazewinkel, M.: Formal groups and applications. New York: Academic Pres 1978Google Scholar
  6. 6.
    Lang, S.: Elliptic curves: diophantine analysis. Berlin Heidelberg New York: Springer 1978Google Scholar
  7. 7.
    Lang, S.: Complex multiplication. Berlin Heidelberg New York: Springer 1983Google Scholar
  8. 8.
    Lang, S.: Diophantine geometry. Berlin Heidelberg New York: Springer 1983Google Scholar
  9. 9.
    Ribet, K.: Dividing rational points on abelian varieties of CM-type. Compos. Math.33, 69–74 (1976)Google Scholar
  10. 10.
    Rubin, K.: Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer. Invent. Math.64, 455–470 (1981)Google Scholar
  11. 11.
    Rubin, K.: Congruences for special values ofL-functions of elliptic curves with complex multiplication. Invent. Math.71, 339–364 (1983)Google Scholar
  12. 12.
    Rubin, K.: Elliptic curves andZ p-extensions. Compos. Math.56, 237–250 (1985)Google Scholar
  13. 13.
    Rubin, K.: Tate-Shafarevich groups andL-functions of elliptic curves with complex multiplication. Invent. Math.89, 527–560 (1987)Google Scholar
  14. 14.
    Rubin, K.: Global units and ideal class groups. Invent. Math.89, 511–526 (1987)Google Scholar
  15. 15.
    Sah, H.: Automorphisms of finite groups. J. Algebra10, 47–68 (1968)Google Scholar
  16. 16.
    Serre, J.-P.: Local class field theory. Algebraic number theory. Cassels, J.W.S., Fröhlich, A. (eds.) pp. 128–161, London: Academic Press 1967Google Scholar
  17. 17.
    Serre, J.-P.: Lie algebras and Lie groups. Reading: Benjamin 1965Google Scholar
  18. 18.
    Serre, J.-P., Tate, J.: Good reduction of abelian varieties. Ann. Math.88, 492–517 (1968)Google Scholar
  19. 19.
    Setzer, B.: The determination of all imaginary quartic, abelian number fields with class number 1. Math. Comp.35, 1383–1386 (1980)Google Scholar
  20. 20.
    Shimura, G.: On the zeta function of an abelian variety with complex multiplication. Ann. Math. (2)94, 504–533 (1971)Google Scholar
  21. 21.
    Stark, H.: The Coates-Wiles theorem revisited. Number theory related to Fermat's last theorem (Progress in Math., Vol. 26). Boston: Birkhäuser 1982Google Scholar
  22. 22.
    Waldschmidt, M.: Dépendance de logarithmes dans les groupes algébriques. Approximations Diophantiennes et nombres transcendants, (Progress in Math., Vol. 31). Boston: Birkhäuser 1983Google Scholar
  23. 23.
    Washington, L.: Introduction to cyclotomic fields. Berlin Heidelberg New York: Springer 1982Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • David Grant
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations