Mathematische Annalen

, Volume 303, Issue 1, pp 713–740 | Cite as

Analyse sur les boules d'un opérateur sous-elliptique

  • P. Maheux
  • L. Saloff-Coste
Article

Mathematics Subject Classification (1991)

35J70 35P15 58F19 26D10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Bakry, Ledoux, Coulhon et Saloff-Coste.: Sobolev inequalities in disguise, 1994Google Scholar
  2. 2.
    Biroli M., Mosco U.: Forme de Dirichlet et estimations structurelles dans les milieux discontinus. C.R. Acad. Sci. Paris,313 (1991), 593–598Google Scholar
  3. 3.
    Buser P.: A note on the isoperimetric constant. Ann. Sc. E. N. S., 4ème série, t.15, (1982), 213–230Google Scholar
  4. 4.
    Carlen E., Kusuoka S., Stroock D: Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré, Prob. Stat.,23 (1987), 245–287Google Scholar
  5. 5.
    Chavel I.: Eigenvalues in Riemannian Geometry. Academic Press, (1984)Google Scholar
  6. 6.
    Cheeger J., Gromov M., Taylor M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Diff. Geo.17 (1982), 15–53Google Scholar
  7. 7.
    Coulhon T.: Espaces de Lipschitz et inégalités de Poincaré. (1994)Google Scholar
  8. 8.
    Coulhon T., Saloff-Coste L.: Isopérimétrie sur les groupes et les variétés. Rev. Mat. Iberoamericana,9 (1993), 293–314Google Scholar
  9. 9.
    Coulhon T., Saloff-Coste L.: Variétés riemanniennes isométriques à l'infini, Rev. Mat. Iber. paraîtreGoogle Scholar
  10. 10.
    Croke C.: Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. Ec. Norm. Sup. Paris,13 (1980), 419–435Google Scholar
  11. 11.
    Davies E.B.: Heat kernels and spectral theory. Cambridge U.P., (1989)Google Scholar
  12. 12.
    Fefferman C., Phong D.H.: Subelliptic eigenvalue problems. In Proc. Conf. Harm. Anal. in Honor of A. Zygmund, Wadsworth Math. Ser. Wadsworth, Belmont, California (1981), 590–606Google Scholar
  13. 13.
    Franchi B., Gallot S., Wheeden R.L.: Sobolev and isoperimetric inequalities for degenerate metrics. Math. Ann., paraîtreGoogle Scholar
  14. 14.
    Franchi B., Gutierrez C., Wheeden R.L.: Weighted Sobolev-Poincaré inequalities for Gruschin type operators. Comm. P.D.E.,19 (1994), 523–604.Google Scholar
  15. 15.
    Fukushima.: Dirichlet forms and Markov processes. North Holland, Amsterdam (1980)Google Scholar
  16. 16.
    Guivarc'h Y.: Croissance polynômiale et périodes des fonctions harmoniques. Bull. Soc. Math. France,101 (1973), 333–379Google Scholar
  17. 17.
    Jerison D.: The Poincaré inequality for vector fields satisfying Hörmander condition. Duke Math. J.,53 (1986), 503–523Google Scholar
  18. 18.
    Jerison D., Sanchez-Calle A.: Subelliptic second order differential operators. Springer Lecture Notes in Math.,1277 (1986), 47–77Google Scholar
  19. 19.
    Kusuoka S., Stroock D.: Applications of the Malliavin calculus, III., J. Fac. Sci. Univ. Tokyo, Sect. IA, Math.,34 (1987), 391–442Google Scholar
  20. 20.
    Lu G.: Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander condition. Rev. Mat. Iber.,8 (1992), 367–439Google Scholar
  21. 21.
    Lu G.: The sharp Poincaré inequality for free vector fields: An end point result. Rev. Mat. Iber.,10 (1994), 1–14Google Scholar
  22. 22.
    Maheux P.: Analyse et géométrie sur les espaces homogènes. Thèse de Doctorat, Université Paris VI (1991)Google Scholar
  23. 23.
    Maheux P.: Estimations du noyau de la chaleur sur les espaces homogènes. A paraître J. Geom. Anal.Google Scholar
  24. 24.
    Maz'ya V.: Sobolev spaces. Springer Verlag, (1985)Google Scholar
  25. 25.
    Nagel A., Stein E., Wainger M.: Balls and metrics defined by vector fields. Acta Math.,155 (1985), 103–147Google Scholar
  26. 26.
    Robinson D.: Elliptic operators on Lie groups. Oxford University Press, (1991)Google Scholar
  27. 27.
    Saloff-Coste L., Stroock D.: Opérateurs uniformément sous-elliptiques sur des groupes de Lie. J. Funct. Anal.,98 (1991), 97–109Google Scholar
  28. 28.
    Saloff-Coste L.: Analyse sur les groupes de Lie à croissance polynômiale. Arkiv för Mat.,28 (1990), 315–331Google Scholar
  29. 29.
    Saloff-Coste L.: Uniformly elliptic operators on Riemannian manifolds. J. Diff. Geom.,36 (1992), 417–450Google Scholar
  30. 30.
    Saloff-Coste L.: A note on Poincaré, Sobolev, and Harnack inequalities. Duke Math. J., I.M.R.N.,2 (1992), 27–38Google Scholar
  31. 31.
    Saloff-Coste L.: On global Sobolev inequalities. Forum Math.,67 (1994), 109–121Google Scholar
  32. 32.
    Sturm K. Th.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness andL p Liouville properties. J. Reine Angew. Math., (1994)Google Scholar
  33. 33.
    Varopoulos N., Analysis on Lie groups. J. funct. Anal.,76 (1988), 346–410Google Scholar
  34. 34.
    Varopoulos N.: Fonctions harmoniques sur les groupes de Lie. C.R.A.S. Paris, série I,304 (1987), 519–521Google Scholar
  35. 35.
    Varopoulos N.: Small time Gaussian estimates of heat diffusion kernels. Part I: the semigroup technique. Bull. Sc. Math.,113 (1989), 253–277Google Scholar
  36. 36.
    Varopoulos N., Saloff-Cost L., Coulhon T.: Analysis and geometry on groups. Cambridge University Press, (1993)Google Scholar
  37. 37.
    Yau S-T.: Isoperimetric constants and the first eigenvalue of a compact riemannian manifold. Ann. Sc. E.N.S. 4ème série,8 (1975), 487–507Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • P. Maheux
    • 1
  • L. Saloff-Coste
    • 2
  1. 1.Département de MathematiquesUniversité d'OrléansOrléans Cedex 2France
  2. 2.CNRS, Laboratoire de Statistique et ProbabilitésUniversité Paul SabatierToulouse CedexFrance

Personalised recommendations