MacLane homology and topological Hochschild homology
Article
- 145 Downloads
- 3 Citations
Preview
Unable to display preview. Download preview PDF.
References
- 1.J.M. Boardman, Stable homotopy theory; mimeographed notes; University of Warwick (1965)Google Scholar
- 2.M. Bökstedt, Topological Hochschild homology; Preprint Universität BielefeldGoogle Scholar
- 3.B.I. Dundas and R. McCarthy, StableK-theory and topological Hochschild homology; Preprint 1992Google Scholar
- 4.A. Dold, Lectures on Algebraic Topology; Springer-Verlag (1972)Google Scholar
- 5.A. Dold, Homology of symmetric products and other functors of complexes; Ann. of Math.68, (1958); 54–80Google Scholar
- 6.A. Dold and D. Puppe, Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier11, (1961), 201–312Google Scholar
- 7.S. Eilenberg and S. MacLane, Cohomology theory of abelian groups and homotopy theory I; Proc. Nat. Acad. Sci. USA36 (1950), 443–447Google Scholar
- 8.S. Eilenberg and S. MacLane, Homology theories for multiplicative systems; Trans. Amer. Math. Soc.71, (1951), 294–330Google Scholar
- 9.S. Eilenberg and S. MacLane, On the groupsH(Π,n) I, Ann. of Math.68 (1953); 55–106Google Scholar
- 10.A.D. Elmendorf, J.P.C. Greenlees, I. Kriz and J.P. May, Commutative algebra in stable homotopy theory and a completion theorem; Math. Research Letters1 (1994), 225–239Google Scholar
- 11.A.D. Elmendorf, I. Kriz and J.P. May, Commutative algebra in stable homotopy theory, in preparationGoogle Scholar
- 12.Th. Gunnarson and R. Schwänzl, Chain algebras, simplicial rings, and Eilenberg-MacLane ring spectra, in preparationGoogle Scholar
- 13.J. Hollender and R.M. Vogt, Modules of topological spaces, applications to homotopy limits andE ∞ structures; Arch. Math.59 (1992), 115–129Google Scholar
- 14.M. Jibladze and T. Pirashvili, Cohomology of algebraic theories; J. of Algebra137 (1991), 253–296Google Scholar
- 15.S. MacLane, Homologie des anneaux et des modules; Coll. topologie algébrique, Louvain (1956), 55–80Google Scholar
- 16.S. MacLane, Homology; Springer Verlag 1963Google Scholar
- 17.J.P. May, Simplicial objects in algebraic topology; Van Nostrand Math. Studies11 (1967)Google Scholar
- 18.J.P. May, Multiplicative infinite loop space theory; J. Pure Appl. Algebra26 (1982), 1–69Google Scholar
- 19.T. Pirashvili, New homology and cohomology of rings; Bull. Acad. Sci. Georgia133 (1989), 477–480Google Scholar
- 20.T. Pirashvili and F. Waldhausen, MacLane homology and topological Hochschild homology; J. Pure Appl. Algebra82 (1992), 81–98Google Scholar
- 21.A. Robinson, Derived tensor products in stable homotopy theory; Topology22 (1983), 1–18Google Scholar
- 22.R. Schwänzl, R. Staffeldt and F. Waldhausen, The equivalence of stableK-theory and topological Hochschild homology; Preprint Univ. Bielefeld (1994)Google Scholar
- 23.R. Schwänzl and R. Vogt, On the equivalence of two definitions of topological Hochschild homology; in preparationGoogle Scholar
- 24.G. Segal, Categories and cohomology theories; Topology13 (1974), 293–312Google Scholar
- 25.R. Steiner, A canonical operad pair, Math. Proc. Cambridge Phil. Soc.86 (1979), 443–449Google Scholar
- 26.F. Waldhausen, AlgebraicK-theory of topological spaces I; Proc. Symp. Pure Math.32 (1978), 35–60Google Scholar
- 27.F. Waldhausen, AlgebraicK-theory of topological spaces II; Springer Lecture Notes in Mathematics763 (1979), 356–394Google Scholar
Copyright information
© Springer-Verlag 1995