Advertisement

Mathematische Annalen

, Volume 303, Issue 1, pp 149–164 | Cite as

MacLane homology and topological Hochschild homology

  • Z. Fiedorowicz
  • T. Pirashvili
  • R. Schwänzl
  • R. Vogt
  • F. Waldhausen
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Boardman, Stable homotopy theory; mimeographed notes; University of Warwick (1965)Google Scholar
  2. 2.
    M. Bökstedt, Topological Hochschild homology; Preprint Universität BielefeldGoogle Scholar
  3. 3.
    B.I. Dundas and R. McCarthy, StableK-theory and topological Hochschild homology; Preprint 1992Google Scholar
  4. 4.
    A. Dold, Lectures on Algebraic Topology; Springer-Verlag (1972)Google Scholar
  5. 5.
    A. Dold, Homology of symmetric products and other functors of complexes; Ann. of Math.68, (1958); 54–80Google Scholar
  6. 6.
    A. Dold and D. Puppe, Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier11, (1961), 201–312Google Scholar
  7. 7.
    S. Eilenberg and S. MacLane, Cohomology theory of abelian groups and homotopy theory I; Proc. Nat. Acad. Sci. USA36 (1950), 443–447Google Scholar
  8. 8.
    S. Eilenberg and S. MacLane, Homology theories for multiplicative systems; Trans. Amer. Math. Soc.71, (1951), 294–330Google Scholar
  9. 9.
    S. Eilenberg and S. MacLane, On the groupsH(Π,n) I, Ann. of Math.68 (1953); 55–106Google Scholar
  10. 10.
    A.D. Elmendorf, J.P.C. Greenlees, I. Kriz and J.P. May, Commutative algebra in stable homotopy theory and a completion theorem; Math. Research Letters1 (1994), 225–239Google Scholar
  11. 11.
    A.D. Elmendorf, I. Kriz and J.P. May, Commutative algebra in stable homotopy theory, in preparationGoogle Scholar
  12. 12.
    Th. Gunnarson and R. Schwänzl, Chain algebras, simplicial rings, and Eilenberg-MacLane ring spectra, in preparationGoogle Scholar
  13. 13.
    J. Hollender and R.M. Vogt, Modules of topological spaces, applications to homotopy limits andE structures; Arch. Math.59 (1992), 115–129Google Scholar
  14. 14.
    M. Jibladze and T. Pirashvili, Cohomology of algebraic theories; J. of Algebra137 (1991), 253–296Google Scholar
  15. 15.
    S. MacLane, Homologie des anneaux et des modules; Coll. topologie algébrique, Louvain (1956), 55–80Google Scholar
  16. 16.
    S. MacLane, Homology; Springer Verlag 1963Google Scholar
  17. 17.
    J.P. May, Simplicial objects in algebraic topology; Van Nostrand Math. Studies11 (1967)Google Scholar
  18. 18.
    J.P. May, Multiplicative infinite loop space theory; J. Pure Appl. Algebra26 (1982), 1–69Google Scholar
  19. 19.
    T. Pirashvili, New homology and cohomology of rings; Bull. Acad. Sci. Georgia133 (1989), 477–480Google Scholar
  20. 20.
    T. Pirashvili and F. Waldhausen, MacLane homology and topological Hochschild homology; J. Pure Appl. Algebra82 (1992), 81–98Google Scholar
  21. 21.
    A. Robinson, Derived tensor products in stable homotopy theory; Topology22 (1983), 1–18Google Scholar
  22. 22.
    R. Schwänzl, R. Staffeldt and F. Waldhausen, The equivalence of stableK-theory and topological Hochschild homology; Preprint Univ. Bielefeld (1994)Google Scholar
  23. 23.
    R. Schwänzl and R. Vogt, On the equivalence of two definitions of topological Hochschild homology; in preparationGoogle Scholar
  24. 24.
    G. Segal, Categories and cohomology theories; Topology13 (1974), 293–312Google Scholar
  25. 25.
    R. Steiner, A canonical operad pair, Math. Proc. Cambridge Phil. Soc.86 (1979), 443–449Google Scholar
  26. 26.
    F. Waldhausen, AlgebraicK-theory of topological spaces I; Proc. Symp. Pure Math.32 (1978), 35–60Google Scholar
  27. 27.
    F. Waldhausen, AlgebraicK-theory of topological spaces II; Springer Lecture Notes in Mathematics763 (1979), 356–394Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Z. Fiedorowicz
    • 1
  • T. Pirashvili
    • 1
  • R. Schwänzl
    • 1
  • R. Vogt
    • 1
  • F. Waldhausen
    • 1
  1. 1.Fachbereich 6/MathematikUniversität OsnabrückOsnabrückGermany

Personalised recommendations