Mathematische Annalen

, Volume 303, Issue 1, pp 125–148 | Cite as

Holomorphic equivariant cohomology

  • Kefeng Liu

Mathematics Subject Classification (1991)

14C30 32J25 53C55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah, M.F. and Bott, R.: A Lefschetz fixed points formula for elliptic complexes, I, Ann. of Math.,86 (1967) 374–407; II, Ann. of Math.88 (1968) 415–441Google Scholar
  2. 2.
    Atiyah, M.F. and Bott, R.: The moment map and equivariant cohomology, Top., Vol.23, No. 1 (1984) 1–23Google Scholar
  3. 3.
    Atiyah, M.F. and Singer, I.M.: The index formula for elliptic operator, III, Ann. of Math.,88 (1968) 546–604Google Scholar
  4. 4.
    Berligne and Vergne, M.: The equivariant index and Kirillov character formula, Amer. J. of Math., (1985) 1159–1190Google Scholar
  5. 5.
    Bott, R.: A residue formula for holomorphic vector fields, J. of Diff. Geom., Vol 1, No. 1 (1967) 311–330Google Scholar
  6. 6.
    Carrell, J. and Liebermann, D.: Holomorphic vector fields and Kahler manifolds, Invent. Math., vol. 21 (1973) 303–309Google Scholar
  7. 7.
    Carrell, J. and Sommese, A.J.: Some topological aspects ofC *-actions on compact Kahler manifolds, Comment. Math. Helv.,54, (1979) 567–582Google Scholar
  8. 8.
    Chern, S.S.: Meromorphic vector fields and characteristic numbers, Scripta. Math., Vol. XXIX, No. 3-4 (1973) 243–251Google Scholar
  9. 9.
    Crew, R. and Fried, D.: Nonsingular holomorphic flows, Topology Vol. 25, No. 4 (1986) 471–473Google Scholar
  10. 10.
    Frankel, T.: Fixed points and torsion on Kahler manifold, Ann. of Math.,70 (1959) 1–8Google Scholar
  11. 11.
    Griffiths, P.A. and Harris, J.: Principles of Algebraic Geometry. John Wiley 1978Google Scholar
  12. 12.
    Karp, L.: Holomorphic vector fields on complex manifold, The Michigan Math. J., No. 1 (1987) 31–38Google Scholar
  13. 13.
    Kirwan, F.: Morse functions for which the stationary phase approximation is exact, Topology, Vol. 26, No. 1 (1987) 37–40Google Scholar
  14. 14.
    Kobayashi, S.: Transformation Groups, In Differential Geometry, Springer-Verlag 1972Google Scholar
  15. 15.
    Kodaira, K.: Complex Manifold, Springer 1986Google Scholar
  16. 16.
    Wang, X.P.: Thesis, Nante Univ. 1985Google Scholar
  17. 17.
    Witten, E.: Supersymmetry and Morse theory, J. Diff. Geom.,17 (1982)Google Scholar
  18. 18.
    Witten, E.: Holomorphic Morse inequality, Taubner-texte, Zur Math. 70, Algebraic and Differential TopologyGoogle Scholar
  19. 19.
    Zhang, W.P.: A remark on the Bott residue formula, Acta Math. Sinica, New series, Vol. 6 No. 4 (1990) 306–314Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Kefeng Liu
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations