Mathematische Annalen

, Volume 303, Issue 1, pp 125–148 | Cite as

Holomorphic equivariant cohomology

  • Kefeng Liu
Article

Mathematics Subject Classification (1991)

14C30 32J25 53C55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.F. and Bott, R.: A Lefschetz fixed points formula for elliptic complexes, I, Ann. of Math.,86 (1967) 374–407; II, Ann. of Math.88 (1968) 415–441Google Scholar
  2. 2.
    Atiyah, M.F. and Bott, R.: The moment map and equivariant cohomology, Top., Vol.23, No. 1 (1984) 1–23Google Scholar
  3. 3.
    Atiyah, M.F. and Singer, I.M.: The index formula for elliptic operator, III, Ann. of Math.,88 (1968) 546–604Google Scholar
  4. 4.
    Berligne and Vergne, M.: The equivariant index and Kirillov character formula, Amer. J. of Math., (1985) 1159–1190Google Scholar
  5. 5.
    Bott, R.: A residue formula for holomorphic vector fields, J. of Diff. Geom., Vol 1, No. 1 (1967) 311–330Google Scholar
  6. 6.
    Carrell, J. and Liebermann, D.: Holomorphic vector fields and Kahler manifolds, Invent. Math., vol. 21 (1973) 303–309Google Scholar
  7. 7.
    Carrell, J. and Sommese, A.J.: Some topological aspects ofC *-actions on compact Kahler manifolds, Comment. Math. Helv.,54, (1979) 567–582Google Scholar
  8. 8.
    Chern, S.S.: Meromorphic vector fields and characteristic numbers, Scripta. Math., Vol. XXIX, No. 3-4 (1973) 243–251Google Scholar
  9. 9.
    Crew, R. and Fried, D.: Nonsingular holomorphic flows, Topology Vol. 25, No. 4 (1986) 471–473Google Scholar
  10. 10.
    Frankel, T.: Fixed points and torsion on Kahler manifold, Ann. of Math.,70 (1959) 1–8Google Scholar
  11. 11.
    Griffiths, P.A. and Harris, J.: Principles of Algebraic Geometry. John Wiley 1978Google Scholar
  12. 12.
    Karp, L.: Holomorphic vector fields on complex manifold, The Michigan Math. J., No. 1 (1987) 31–38Google Scholar
  13. 13.
    Kirwan, F.: Morse functions for which the stationary phase approximation is exact, Topology, Vol. 26, No. 1 (1987) 37–40Google Scholar
  14. 14.
    Kobayashi, S.: Transformation Groups, In Differential Geometry, Springer-Verlag 1972Google Scholar
  15. 15.
    Kodaira, K.: Complex Manifold, Springer 1986Google Scholar
  16. 16.
    Wang, X.P.: Thesis, Nante Univ. 1985Google Scholar
  17. 17.
    Witten, E.: Supersymmetry and Morse theory, J. Diff. Geom.,17 (1982)Google Scholar
  18. 18.
    Witten, E.: Holomorphic Morse inequality, Taubner-texte, Zur Math. 70, Algebraic and Differential TopologyGoogle Scholar
  19. 19.
    Zhang, W.P.: A remark on the Bott residue formula, Acta Math. Sinica, New series, Vol. 6 No. 4 (1990) 306–314Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Kefeng Liu
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations