Mathematische Annalen

, Volume 282, Issue 3, pp 463–471

Remarks on the existence problem of positive Kähler-Einstein metrics

  • Wei-Yue Ding


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Au]
    Aubin, T.: Réduction du cas positif de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d'une inégalite. Funct. Anal.57, 143–153 (1984)Google Scholar
  2. [B-M]
    Bando, S., Mabuchi, T.: Uniqueness of Einstein Kähler metrics modulo connected group actions. PreprintGoogle Scholar
  3. [C-Y]
    Chang, S.Y.A., Yang, P.: On prescribing Gaussian curvature onS 2. PreprintGoogle Scholar
  4. [C-D]
    Chen, W., Ding, W.: Scalar curvatures onS 2. Trans. Am. Math. Soc. (in press)Google Scholar
  5. [Ko]
    Kobayashi, S.: Transformation groups in differential geometry. Berlin Heidelberg New York: Springer 1972Google Scholar
  6. [Ma]
    Mabuchi, T.:K-energy maps integrating Futaki invariant. PreprintGoogle Scholar
  7. [Mo]
    Moser, J.: A sharp form of an inequality of N. Trudinger. Ind. Univ. Math. J.20, 1077–1091 (1971)Google Scholar
  8. [On]
    Onofri, E.: On the positivity of the effective action in a theory of random surface. Commun. Math. Phys.86, 321–326 (1982)Google Scholar
  9. [Si]
    Siu, Y.T.: The existence of Kähler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable symmetric group. PreprintGoogle Scholar
  10. [Ti]
    Tian, G.: On Kähler-Einstein metrics on certain Kähler manifolds withC 1(M)>0. Invent. Math.89, 225–246 (1987)Google Scholar
  11. [T-Y]
    Tian, G., Yau, S.T.: Kähler-Einstein metrics on complex surfaces withC 1>0. Commun. Math. Phys.112, 175–203 (1987)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Wei-Yue Ding
    • 1
  1. 1.Institute of MathematicsAcademia SinicaBeijingPeoples Republic of China

Personalised recommendations