Mathematische Annalen

, Volume 299, Issue 1, pp 565–596 | Cite as

On the method of Coleman and Chabauty

  • William G. McCallum
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AHB]
    Adelman, L. M., Heath-Brown, D. R.,The first case of Fermat's last theorem, Invent. Math.79 (1985), no. 2, 409–416.Google Scholar
  2. [BGR]
    S. Bosch, U. Guntzer, R. Remmert,Non-archimedean analysis, Springer, Berlin, 1984.Google Scholar
  3. [BLR]
    S. Bosch, W. Lütkebohmert, M. Raynaud,Néron Models, Springer-Verlag, Berlin-Heidelberg, 1990.Google Scholar
  4. [B]
    N. Bourbaki,Lie Groups and Lie Algebras, Part I, Hermann, Addison-Wesley, Reading, Massachusetts (1975).Google Scholar
  5. [CF]
    J.W.S. Cassels, A. Fröhlich (eds.),Algebraic Number Theory, Academic Press, London, 1967.Google Scholar
  6. [C1]
    R.F. Coleman,Torsion points on curves and p-adic abelian integrals, Annals of Math.121 (1983), 111–168.Google Scholar
  7. [C2]
    R.F. Coleman,Effective Chabauty, Duke Math. J.52 (1985), 765–770.Google Scholar
  8. [E]
    L. Euler,Vollständige Anleitung zur Algebra, Royal Acad. of Sciences, St. Petersburg, 1770. Also inOpera Omnia, Ser. I, Vol. I, Teubner, Leipzig-Berlin, 1915, pp. 484–489.Google Scholar
  9. [F]
    D.K. Faddeev,Invariants of divisor classes for the curves x k (1−x)=y l in an l-adic cyclotomic field, Tr. Mat. Inst. Steklova64 (1961), 284–293.Google Scholar
  10. [G]
    R. Greenberg,On the Jacobian variety of some algebraic curves, Compos. Math.42 (1981), 345–359.Google Scholar
  11. [GR]
    B.H. Gross, D.E. Rohrlich,Some results on the Mordell-Weil group of the Jacobian of the Fermat curve, Invent. Math44, 201–224.Google Scholar
  12. [H]
    R. Hartshorne,Residues and duality. Lecture Notes in Mathematics, Vol. 20. Springer, Berlin-Heidelberg-New York, 1966.Google Scholar
  13. [K]
    E. Kummer,Beweis des Fermat'schen Satzes der Unmöglichkeit von x λ+y λ=z λ für eine unendliche Anzahl Primzahlen λ, Monatsber. Akad. Wiss. Berlin (1847), 132–139. InCollected Papers, I, 274–281.Google Scholar
  14. [Ma]
    H. Matsumura,Commutative Algebra, Benjamin, Reading, 1980.Google Scholar
  15. [MI]
    W.G. McCallum,The degenerate fiber of the Fermat curve, in Number theory related to Fermat's last theorem (N. Koblitz, ed.), Birkhäuser, Boston, 1982.Google Scholar
  16. [M2]
    W.G. McCallum,On the Shafarevich-Tate group of the Jacobian of a quotient of the Fermat curve, Invent. math.93 (1988), 637–666.Google Scholar
  17. [M3]
    W.G. McCallum,The arithmetic of Fermat curves, to appear in Math. Annalen.Google Scholar
  18. [Mi1]
    J. S. Milne,Étale Cohomology, Princeton University Press, Princeton, 1980.Google Scholar
  19. [Mi2]
    J.S. Milne,Arithmetic Duality Theorems, Academic Press, Orlando, 1986.Google Scholar
  20. [Mi3]
    J. S. Milne,Jacobian Varieties, in G. Cornell and J. H. Silverman,Arithmetic Geometry, Springer-Verlag, New York, 1986.Google Scholar
  21. [Ra]
    M. Raynaud,Specialization du Foncteur Picard, Publ. I.H.E.S.38 (1970), 27–76.Google Scholar
  22. [Ri]
    Paulo Ribenboim,13 Lectures on Fermat's Last Theorem, Springer-Verlag, New York, 1979.Google Scholar
  23. [S1]
    J.-P. Serre,Groupes algébriques et corps de classes, Hermann, Paris, 1959.Google Scholar
  24. [S2]
    J.-P. Serre,Local Fields, Springer-Verlag, New York, 1979.Google Scholar
  25. [W]
    L.C. Washington,Introduction to cyclotomic fields, Springer-Verlag, New York, 1982.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • William G. McCallum
    • 1
  1. 1.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations