Mathematische Annalen

, Volume 299, Issue 1, pp 449–476

Tensor products of modules and the rigidity of Tor

  • Craig Huneke
  • Roger Wiegand
Article
  • 159 Downloads

Mathematics Subject Classifications (1991)

13C12 13C14 13D02 13H10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    Auslander, M.: Modules over unramified regular local rings. Ill. J. Math.5, 631–647 (1961)Google Scholar
  2. [AB]
    Auslander, M., Buchsbaum D.: Invariant factors and two criteria for projectivity of modules. Trans. Am. Math. Soc.104, 516–522 (1962)Google Scholar
  3. [E]
    Eisenbud, D.: Homological algebra on a complete intersection, with an application to group representations. Trans. Am. Math. Soc.260, 35–64 (1980)Google Scholar
  4. [EG1]
    Evans, E.G., Griffith, P.: Syzygies. Lond. Math. Soc. Lect. Notes Ser.106 (1985)Google Scholar
  5. [EG2]
    Evans, E. G., Griffith, P.: Local cohomology modules for normal domains. J. Lond. Math. Soc.19, 277–284 (1979)Google Scholar
  6. [EGA]
    Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique IV, partie 2. Publ. Math.,24 (1967)Google Scholar
  7. [GS]
    Gillet, H., Soulé, C.: K-théorie et nullité des multiplicités d'intersection. C.R. Acad. Sci., Paris, Sér. I300 (no. 3), 71–74 (1985)Google Scholar
  8. [He]
    heitmann, R.: A counterexample to the rigidity conjecture for rings. Bull. Am. Math. Soc.29, 94–97 (1993)Google Scholar
  9. [Ho1]
    Hochster, M.: Topics in the homological theory of modules over commutative rings. (CBMS Reg. Conf. Ser., vol. 24) Philadelphia: Soc. Ind. Appl. Math. 1975Google Scholar
  10. [Ho2]
    Hochster, M.: Euler characteritics over unramified regular local rings. Ill. J. Math.28(2), 281–285 (1984)Google Scholar
  11. [HK]
    Herzog, J., Kunz, E.: Der kanonische Modul eines Cohen-Macaulay Rings. (Lect. Notes Math., vol. 238) Berlin Heidelberg New York: Springer 1971Google Scholar
  12. [HW]
    Heitmann, R., Wiegand, R.: Direct sums of ideals. Linear Algebra Appl.157, 21–36 (1991)Google Scholar
  13. [K]
    Knörrer, H.: Cohen-Macaulay modules on hypersurface singularities. I. Invent. Math.88, 153–164 (1987)Google Scholar
  14. [L]
    Lichtenbaum, S.: On the vanishing of Tor in regular local rings. Ill. J. Math.10, 220–226 (1966)Google Scholar
  15. [Ma]
    Matsumura, H.: Commutative ring theory. Cambridge: Cambridge University Press 1989Google Scholar
  16. [Mu]
    Murthy, M.P.: Modules over regular local rings. Ill. J. Math.7, 558–565 (1963)Google Scholar
  17. [Rob]
    Roberts, P.: The vanishing of intersection multiplicities of perfect complexes. Bull. Am. Math. Soc.13(2) 127–130 (1985)Google Scholar
  18. [Rot]
    Rotman, J.: An introduction to homological algebra. New York: Academic Press 1979Google Scholar
  19. [S1]
    Serre J.-P.: Sur les modules projectifs. Sémin. Dubreil-Pisot14 (no. 2), 1–16 (1960/61)Google Scholar
  20. [S2]
    Serre, J.-P.: Algèbre locale, multiplicités. (Lect. Notes Math., vol. 11) Berlin Heidelberg New York: Springer 1965Google Scholar
  21. [SS]
    Scheja, G., Storch, U.: deDifferentielle Eigenschaften der Lokalisierungen analytischer Algebren. Math. Ann.197, 137–170 (1972)Google Scholar
  22. [V]
    Vasconcelos, W.: Reflexive modules over Gorenstein rings. Proc. Am. Math. Soc.19, 1349–1355 (1968)Google Scholar
  23. [Y]
    Yoshino, Y.: Cohen-Macaulay modules over Cohen-Macaulay rings. Lond. Math. Soc. Lect. Notes Ser.146 (1990)Google Scholar
  24. [YCM]
    Yue-Chi-Ming, R.: On module rigidity over local rings. J. Lond. Math. Soc.44, 299–302 (1969)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Craig Huneke
    • 1
  • Roger Wiegand
    • 1
  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsUniversity of NebraskaLincolnUSA

Personalised recommendations