Advertisement

Mathematische Annalen

, Volume 298, Issue 1, pp 89–100 | Cite as

Geometric methods for solving Codazzi and Monge-Ampère equations

  • U. Pinkall
  • A. Schwenk-Schellschmidt
  • U. Simon
Article

Keywords

Geometric Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [D-N-V]
    Dillen, F., Nomizu, K., Vrancken, L.: Conjugate connections and Radon's theorem in affine differential geometry. Monatsh. Math.109, 221–235 (1990)Google Scholar
  2. [Eis]
    Eisenhart, L.P.: Non-Riemannian geometry. Colloq. Publ., Am. Math. Soc.VIII (1927)Google Scholar
  3. [Fe]
    Ferus, D.: A remark on Codazzi tensors in constant curvature space. In: Ferus, D., et al. (eds.) Global differential geometry and global analysis. (Lect. Notes Math., vol. 838, p. 257) Berlin Heidelberg New York: Springer 1981Google Scholar
  4. [K-N]
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. I. New York: Interscience 1963Google Scholar
  5. [L-N-W]
    Li, A.-M., Nomizu, K., Wang, C.-P.: A generalization of Lelieuvre's formula. Result. Math.20, 682–690 (1991)Google Scholar
  6. [N]
    Nomizu, K.: Introduction to affine differential geometry, part I. Lecture Notes, MPI preprint MPI 88-37, 1988; Revised: Department of Mathematics, Brown University (1989)Google Scholar
  7. [N-P-1]
    Nomizu, K., Pinkall, U.: On the geometry of affine immersions. Math. Z.195, 165–178 (1987); [Zbl 629.53012]Google Scholar
  8. [N-P-2]
    Nomizu, K., Pinkall, U.: On a certain class of homogeneous projectively flat manifolds. Tôhoku Math. J., II. Ser.39, 407–427 (1987)Google Scholar
  9. [N-S]
    Nomizu, K., Simon, U.: Notes on Conjugate Connections. In: Dillen, F., Verstraelen, L. (eds.). Geometry and Topology of Submanifolds, IV. Proc. Conf. Diff. Geom. Vision, Leuven 1991, pp. 152–171: Singapore: World Scientific 1992Google Scholar
  10. [O-S]
    Oliker, V., Simon, U.: Codazzi tensors and equations of Monge-Ampère type on compact manifolds of constant sectional curvature. J. Reine Angew. Math.342, 35–65 (1983)Google Scholar
  11. [Schi]
    Schirokow, A.P., Schirokow, P.A.: Affine Differentialgeometrie. Leipzig: Teubner 1962, [Zbl.: 106.147; Russ. Original. Zbl. 85.367]Google Scholar
  12. [Schou]
    Schouten, J. A.: Ricci-Calculus, 2nd. ed. Berlin Heidelberg New York: Springer 1954Google Scholar
  13. [Si-1]
    Simon, U.: Zur Entwicklung der affinen Differentialgeometrie. In: Blaschke, W. Gesammelte Werke, vol. 4, Affine Differentialgeometrie. Differentialgeometrie der Kreis- und Kugelgruppen. Essen: Thales 1985Google Scholar
  14. [Si-2]
    Simon, U.: The fundamental theorem in affine hypersurface theory. Geom. Dedicata26, 125–137 (1988)Google Scholar
  15. [Si-3]
    Simon, U.: Global uniqueness for ovaloids in Euclidean and affine differential geometry. Tôkoku Math. J.44, 327–334 (1992)Google Scholar
  16. [Si-4]
    Simon, U.: The uniqueness problem for Monge-Ampère equations on projectively flat manifolds. Bull. Belg. Math. Soc.45, 25–34 (1993)Google Scholar
  17. [S-S-V]
    Simon, U., Schwenk-Schellschmidt, A., Viesel, H.: Introduction to the affine differential geometry of hypersurfaces. Lecture Notes, Science University of Tokyo 1991Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • U. Pinkall
    • 1
  • A. Schwenk-Schellschmidt
    • 2
  • U. Simon
    • 1
  1. 1.FB MathematikTechnische Universität BerlinBerlinGermany
  2. 2.FB Mathematik/PhysikTFH BerlinBerlinGermany

Personalised recommendations