Mathematische Annalen

, Volume 297, Issue 1, pp 221–233 | Cite as

General Selmer groups and critical values of HeckeL-functions

Article

Mathematics Subject Classification (1991)

14H25 14G10 14G25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coates, J.: Infinite descent on elliptic curves with complex multiplication. In: Artin, M., Tate, J. (eds.), Arithmetic and geometry, papers dedicated to I.R. Shafarevich on the occasion of his 60th birthday. (Prog. Math. vol. 35, pp. 107–136) Boston Basel Stuttgart: Birkhäuser 1983Google Scholar
  2. 2.
    de Shalit, E.: The Iwasawa theory of elliptic curves with complex multiplication. Perspect. Math.3 (1987)Google Scholar
  3. 3.
    Greenberg, R.: On the Birch and Swinnerton-Dyer conjecture. Invent. Math.72, 241–265 (1983)Google Scholar
  4. 4.
    Greenberg, R.: Iwasawa theory forp-adic representations. In: Coates, J. et al. (eds.) Algebraic number theory. (Adv. Stud. Pure Math., vol. 17, pp. 97–137) Boston, MA: Academic Press 1989Google Scholar
  5. 5.
    Greenberg, R.: Iwasawa theory for motives. In Coates, J., Taylor, M.J. (eds.),L-functions and arithmetic. Proceedings of the Durham Symposium. (Lond. Math. Soc. Lect. Notes Ser., vol. 153, pp. 97–137) Cambridge: Cambridge University Press 1991Google Scholar
  6. 6.
    Gross, B., Zagier, D.: On the critical values of HeckeL-series. Mem. Soc. Math. Fr.2, 49–54 (1980)Google Scholar
  7. 7.
    Guo, L.: On a Generalization of Tate dualities with application to Iwasawa theory. Compos. Math.85, 125–161 (1993)Google Scholar
  8. 8.
    Katz, N.:p-adicL functions for CM fields. Invent. Math.49, 199–297 (1978)Google Scholar
  9. 9.
    Mazur, B.: Rational points of abelian varieties with values in towers of number fields. Invent. Math.18 183–266 (1972)Google Scholar
  10. 10.
    Miyake, T.: Modular forms. Berlin Heidelberg New York: Springer 1989Google Scholar
  11. 11.
    Perrin-Riou, B.: Arithmétique des courbes elliptiques et théorie d'Iwasawa. Bull. Soc. Math. Fr., Suppl.17 (1984)Google Scholar
  12. 12.
    Rohrlich, D.:L-functions and division towers. Math. Ann.281, 611–632 (1988)Google Scholar
  13. 13.
    Rubin, K.: On the main conjecture of Iwasawa theory for imaginary quadratic fields. Invent. Math.93, 701–713 (1988)Google Scholar
  14. 14.
    Rubin, K.: The “main conjecture” of Iwasawa theory for imaginary quadratic fields. Invent. Math.103, 25–68 (1991)Google Scholar
  15. 15.
    Yager, R.: On two-variablep-adicL-functions. Ann. Math.115, 411–449 (1982)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Li Guo
    • 1
  1. 1.Department of MathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations