Mathematische Annalen

, Volume 290, Issue 1, pp 643–655 | Cite as

Quotients of toric varieties

  • M. M. Kapranov
  • B. Sturmfels
  • A. V. Zelevinsky


Toric Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baues, H.-J.: Geometry of loop spaces and the cobar construction. Mem. Am. Math. Soc.25, 230 (1980)Google Scholar
  2. 2.
    Billera, L.J., Filliman, P., Sturmfels, B.: Constructions and complexity of secondary polyhedra. Adv. Math.83, 155–179 (1990)Google Scholar
  3. 3.
    Billera, L.J., Kapranov, M.M., Sturmfels, B.: On a conjecture of Baues in the theory of loop spaces. Technical Report 91-19, Math. Sci. Institute of Cornell University, Ithaca, 1991 (to appear in Bull. Am. Math. Soc.)Google Scholar
  4. 4.
    Billera, L.J., Sturmfels, B.: Fiber polytopes, Ann. Math. (to appear)Google Scholar
  5. 5.
    Billera, L.J., Sturmfels, B.: Coherent homotopies of polyhedral subdivisions. In preparationGoogle Scholar
  6. 6.
    Danilov, V.I.: The geometry of toric varieties. Russ. Math. Surv.33, 97–154 (1978); Transl. Usp. Mat. Nauk33, 85–134 (1978)Google Scholar
  7. 7.
    Gaeta, F.: Associate forms, joins, multiplicities, and an intrinsic elimination theory. In: Topics in algebra (Banach Center Publications 26) Warsaw, 1990Google Scholar
  8. 8.
    Gelfand, I.M., Zelevinsky, A.V., Kapranov, M.M.: Discriminants of polynomials in several variables and triangulations of Newton polytopes. Algebra Anal.2, No. 3, 1–62 (1990) (In Russian; English translation to appear in Leningrad Math. J., 1991)Google Scholar
  9. 9.
    Goresky, M., MacPherson, R.: On the topology of algebraic torus actions (Lect. Notes Math., vol. 1271) pp. 73–90. Berlin Heidelberg New York: Springer 1987Google Scholar
  10. 10.
    Kapranov, M.M., Sturmfels, B., Zelevinsky, A.: Chow polytopes and general resultants. Technical Report 91-2, Math. Sci. Institute of Cornell University, Ithaca 1991Google Scholar
  11. 11.
    Lawson, H.B., Jr.: Algebraic cycles and homotopy theory. Ann. Math.129, 253–291 (1989)Google Scholar
  12. 12.
    Mumford, D.: Lectures on curves on an algebraic surface (Ann. Math. Studies, 59) Princeton: Princeton University Press 1966Google Scholar
  13. 13.
    Mumford, D., Fogarty, J.: Geometric invariant theory (2nd ed.) Berlin Heidelberg New York: Springer 1982Google Scholar
  14. 14.
    Oda, T.: Convex bodies and algebraic geometry (Ergeb. Math., 3. Folge, vol. 15) Berlin Heidelberg New York: Springer 1988Google Scholar
  15. 15.
    Shafarevich, I.R.: Basic algebraic geometry. Berlin Heidelberg New York: Springer 1977Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • M. M. Kapranov
    • 1
  • B. Sturmfels
    • 1
  • A. V. Zelevinsky
    • 1
  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations