Mathematische Annalen

, Volume 290, Issue 1, pp 463–471

Points of symmetry of convex sets in the two-dimensional complex space —A counterexample to D. Yost's problem

  • E. Behrends
Article
  • 33 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alfsen, E.M., Effros, E.G.: Structure in real Banach spaces. Part I and II. Ann. Math.96, 98–173 (1972)Google Scholar
  2. 2.
    Aupetit, B.: Analytic multivalued functions in Banach algebras and uniform algebras. Adv. Math.44, 18–60 (1982)Google Scholar
  3. 3.
    Aupetit, B.: Geometry of pseudoconvex open sets and distribution of values of analytic multivalued functions. Contemp. Math.32, 15–45 (1984)Google Scholar
  4. 4.
    Berndtsson, B., Ransford, T.J.: Analytic multifunctions the\(\bar \partial \), and a proof of the Corona theorem. Pac. J. Math.124, 57–72 (1986)Google Scholar
  5. 5.
    Harmand, P., Werner, D., Werner, W.:M-ideals in Banach spaces and Banach algebras. 420 pages (Preprint)Google Scholar
  6. 6.
    Lima, Å.: Intersection properties of balls and subspaces in Banach spaces. Trans. Am. Math. Soc.227, 1–62 (1977)Google Scholar
  7. 7.
    Lima, Å.: OnM-ideals and best approximation. Indiana Univ. Math. J.31, 27–36 (1982)Google Scholar
  8. 8.
    Lima, Å., Yost, D.: Absolutely Chebyshev subspaces. In: Fitzpatrick, S., Giles, J. (eds.) Workshop/Miniconference Funct. Analysis/Optimization. Canberra 1988. Proc. Cent. Math. Anal. Aust. Natl. Univ.20, 116–127 (1988)Google Scholar
  9. 9.
    Mena-Jurado, J.F., Payá, R., Rodríguez-Palacios, A.: Absolute subspaces of Banach spaces. Quart. J. Math. Oxf.40, 43–64 (1989)Google Scholar
  10. 10.
    Payá, R., Rodríguez-Palacios, A.: Banach spaces which are semi-L-summands in their biduals. Math. Ann.289, 529–542 (1991)Google Scholar
  11. 11.
    Payá, R., Yost, D.: The two-ball property: transitivity and examples. Matematika35, 190–197 (1988)Google Scholar
  12. 12.
    Saatkamp, K.: Schnitteigenschaften und beste Approximation. Dissertation, Universität Bonn 1979Google Scholar
  13. 13.
    Yost, D.: Then-ball properties in real and complex Banach spaces. Math. Scand.50, 100–110 (1982)Google Scholar
  14. 14.
    Yost, D.: Semi-M-ideals in complex Banach spaces. Rev. Roum. Math. Pures Appl.29, 619–623 (1984)Google Scholar
  15. 15.
    Yost, D.: Banach spaces isomorphic to properM-ideals. Colloq. Math.56, 99–106 (1988)Google Scholar
  16. 16.
    Yost, D.: Irreducible convex sets. Mathematika (1991) (to appear)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • E. Behrends
    • 1
  1. 1.Fachbereich MathematikFreie Universität, WE1Berlin 33Germany

Personalised recommendations