Mathematische Annalen

, Volume 290, Issue 1, pp 303–321 | Cite as

The boundary of the Eisenstein symbol

  • Norbert Schappacher
  • Anthony J. Scholl
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beilinson, A.A.: Higher regulators and values ofL-functions. J. Sov. Math.30, 2036–2070 (1985)Google Scholar
  2. Beilinson, A.A.: Higher regulators of modular curves. Contemp. Math.55, 1–34 (1986)Google Scholar
  3. Bloch, S.: Lectures on algebraic cycles. Duke Univ. Math. Series IV (1980)Google Scholar
  4. Bloch, S., Grayson, D.:K 2 and theL-functions of elliptic curves. Computer calculations. Contemp. Math.55, 79–88 (1986)Google Scholar
  5. Deligne, P.: Formes modulaires et représentationsl-adiques. Séminaire Bourbaki 1968/69, exp. 355 (Lect. Notes Math., vol. 179, pp. 139–172) Berlin Heidelberg New York: Springer 1968Google Scholar
  6. Deligne, P.: Letter to C. Soulé, 20 Jan. 1985 (unpublished)Google Scholar
  7. Deninger, C.: Higher regulators and HeckeL-series of imaginary quadratic fields I. Invent. Math.96, 1–69 (1989)Google Scholar
  8. Deninger, C., Scholl, A.J.: The Beilinson conjectures. In:L-functions and arithmetic, Coates, J.H., Taylor, M.J. (eds), pp. 173–209 Cambridge: Cambridge Univ. Press 1991Google Scholar
  9. Grayson, D.: HigherK-theory: II, after D. Quillen. In: AlgebraicK-theory. Evanston Proc., Stein, M.R. (ed.) ((Lect. Notes Math., vol. 551, pp. 217–240). Berlin Heidelberg New York: Springer 1976Google Scholar
  10. Loday, J.L.:K-théorie algébrique et représentations de groupes. Ann Sci. Ec. Norm. Super. IV Sér.9, 309–377 (1976)Google Scholar
  11. Mestre, J.-F., Schappacher, N.: Séries de Kronecker et fonctionsL des puissances symétriques de courbes elliptiques surQ. In: Arithmetic algebraic geometry, Van de Geer, G., Oort, F., Steenbrink, J. (eds.) (Prog. Math., vol 89, pp. 209–245. Boston Basel Berlin: Birkhäuser 1991Google Scholar
  12. Ramakrishnan, D.: Regulators, algebraic cycles, and values ofL-functions. Contemp. Math.83, 183–310 (1989)Google Scholar
  13. Scholl, A.J.: Motives for modular forms. Invent. math.100, 419–430 (1990_Google Scholar
  14. Schneider, P.: Introduction to the Beilinson conjectures. In: Beilinson's Conjectures on special values ofL-functions. Rapoport, M., Schappacher, N., Schneider, P. (eds.) Perspecives in Math.4, 1–35. New York: Academic Press 1988Google Scholar
  15. Soulé, C.: Groupes de Chow etK-théorie de variétés sur un corps fini. Math. Ann.268, 317–345 (1984)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Norbert Schappacher
    • 1
  • Anthony J. Scholl
    • 2
  1. 1.Max-Planck-Institut für MathematikBonn 3Germany
  2. 2.Science LaboratoriesDepartment of Mathematical SciencesDurhamEngland

Personalised recommendations