Mathematische Annalen

, Volume 290, Issue 1, pp 77–107 | Cite as

Algebraic surfaces of general type withc 1 2 =3p g −6

  • Kazuhiro Konno


General Type Algebraic Surface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashikaga, T.: A remark on the geography of surfaces with birational canonical morphisms. Math. Ann.290, 63–76 (1991)Google Scholar
  2. 2.
    Ashikaga, T., Konno, K.: Algebraic surfaces of general type withc 12=3p g−7. Tôhoku Math. J.42, 517–536 (1990)Google Scholar
  3. 3.
    Beauville, A.: L'application canonique pour les surfaces de type général. Invent. Math.55, 121–140 (1979)CrossRefGoogle Scholar
  4. 4.
    Castelnuovo, G.: Osservazioni intorno alla geometria sopra una superficie. Nota II, Rendiconti del R. Instituto Lombardo, s. II, vol. 24 (1891)Google Scholar
  5. 5.
    Del Pezzo: Sulle superficie di ordinen immerse nello spazio din+1 dimensioni. Rend. Acad. Napoli (1885)Google Scholar
  6. 6.
    Fujita, T.: On the structure of polarized varieties with Δ-genus zero. J. Fac. Sci. Univ. Tokyo22, 103–115 (1975)Google Scholar
  7. 7.
    Fujita, T.: On the structure of polarized manifolds with total deficiency one. I, II, and III. J. Math. Soc. Jpn32, 709–725 (1980);33, 415–434 (1981);36, 75–89 (1984)Google Scholar
  8. 8.
    Fujita, T.: On polarized varieties of small Δ-genera. Tôhoku Math. J.34, 319–341 (1982)Google Scholar
  9. 9.
    Fujita, T.: Projective varieties of Δ-genus one. In: Algebraic and topological theories — to the memory of Dr. Takehiko MIYATA, pp. 149–175, Kinokuniya Book Store 1985Google Scholar
  10. 10.
    Harris, J.: A bound on the geometric genus of projective varieties. Ann. Sci. Norm. Sup. Pisa Ser. IV8, 35–68 (1981)Google Scholar
  11. 11.
    Harris, J.: Curves in projective space. Lect. Notes, Le presses de l'Université de Montreal, 1982Google Scholar
  12. 12.
    Horikawa, E.: On deformations of quintic surfaces. Invent. Math.31, 43–85 (1975)Google Scholar
  13. 13.
    Horikawa, E.: Algebraic surfaces of general type with smallc 12. I, II, III, IV, and V. Ann. Math.104, 358–387 (1976); Invent. Math.37, 121–155 (1976);47, 209–248 (1978);50, 103–128 (1979); J. Fac. Sci. Univ. Tokyo28, 745–755 (1981)Google Scholar
  14. 14.
    Nagata, M.: On rational surfaces. I. Mem. Coll. Sci. Univ. Kyoto, Ser. A32, 351–370 (1960)Google Scholar
  15. 15.
    Xiao, G.: Hyperelliptic surfaces of general type withK 2<4χ. Manus. Math.57, 125–148 (1987)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Kazuhiro Konno
    • 1
  1. 1.Department of Mathematics, College of General EducationKyushu UnivesityFukuoka 810Japan

Personalised recommendations