Mathematische Annalen

, Volume 266, Issue 4, pp 519–537

Some properties of convex sets related to fixed point theorems

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, G.: Variational inequalities, complementarity problems, and duality theorems. J. Math. Anal. Appl.58, 1–10 (1977)Google Scholar
  2. 2.
    Aubin, J.P.: Applied functional analysis. New York: Wiley-Interscience 1979Google Scholar
  3. 3.
    Aubin, J.P.: Mathematical methods of game and economic theory. Amsterdam: North-Holland 1979Google Scholar
  4. 4.
    Baiocchi, C., Capelo, A.: Disequazioni variazionali e quasivariazionali. Applicazioni a problemi di frontiera libera, Vol. 2: Problemi quasivariazionali. Bologna: Pitagora. 1978Google Scholar
  5. 5.
    Ben-El-Mechaiekh, H., Deguire, P., Granas, A.: Une alternative non-linéaire en analyse convexe et applications. C.R. Acad. Sci. Paris Sér. I Math.295, 257–259 (1982)Google Scholar
  6. 6.
    Ben-El-Mechaiekh, H., Deguire, P., Granas, A.: Points fixes et coincidences pour les applications multivoques (applications de Ky Fan). C.R. Acad. Sci. Paris Sér. I Math.295, 337–340 (1982)Google Scholar
  7. 7.
    Ben-El-Mechaiekh, H., Deguire, P., Granas, A.: Points fixes et coincidences pour les fonctions multivoques II. (Applications de type ϕ et φ*). C.R. Acad. Sci. Paris Sér. I Math.295, 381–384 (1982)Google Scholar
  8. 8.
    Brézis, H., Nirenberg, L., Stampacchia, G.: A remark on Ky Fan's minimax principle. Boll. Un. Mat. Ital.6, 293–300 (1972)Google Scholar
  9. 9.
    Browder, F.E.: The fixed point theory of multi-valued mappings in topological vector spaces. Math. Ann.177, 283–301 (1968)Google Scholar
  10. 10.
    Dugundji, J., Granas, A.: KKM maps and variational inequalities. Ann. Scuola Norm. Sup. Pisa Cl. Sci.5, 679–682 (1978)Google Scholar
  11. 11.
    Dugundji, J., Granas, A.: Fixed point theory, Vol. 1. Monografie Matematyczne61, Warszawa, 1982Google Scholar
  12. 12.
    Fan, K.: Fixed-point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. USA38, 121–126 (1952)Google Scholar
  13. 13.
    Fan, K.: A generalization of Tychonoffs fixed point theorem. Math. Ann.142, 305–310 (1961)Google Scholar
  14. 14.
    Fan, K.: Sur un théorème minimax. C.R. Acad. Sci. Paris Groupe 1,259, 3925–3928 (1964)Google Scholar
  15. 15.
    Fan, K.: Applications of a theorem concerning sets with convex sections. Math. Ann.163, 189–203 (1966)Google Scholar
  16. 16.
    Fan, K.: Extensions of two fixed point theorems of F. E. Browder. Math. Z.112, 234–240 (1969)Google Scholar
  17. 17.
    Fan, K.: A minimax inequality and applications. In: Inequalities, Vol. III, pp. 103–113. (Ed. O. Shisha). New York, London: Academic Press, 1972Google Scholar
  18. 18.
    Fan, K.: Fixed-point and related theorems for non-compact convex sets. In: Game theory and related topics, pp. 151–156. (Eds. O. Moeschlin, D. Pallaschke). Amsterdam: North-Holland, 1979Google Scholar
  19. 19.
    Fan, K.: A further generalization of Shapley's generalization of the Knaster-Kuratowski-Mazurkiewicz theorem. In: Game theory and mathematical economics, pp. 275–279. (Eds. O. Moeschlin, D. Pallaschke). Amsterdam: North-Holland, 1981Google Scholar
  20. 20.
    Glicksberg, I.L.: A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proc. Am. Math. Soc.3, 170–174 (1952)Google Scholar
  21. 21.
    Granas, A.: KKM-maps and their applications to nonlinear problems. In: The Scottish Book (Mathematics from the Scottish Café), pp. 45–61. (Ed. R. D. Mauldin). Basel, Boston: Birkhäuser, 1982Google Scholar
  22. 22.
    Gwinner, J.: Nichtlineare Variationsungleichungen mit Anwendungen. Frankfurt: Haag-Herchen, 1978Google Scholar
  23. 23.
    Gwinner, J.: On fixed points and variational inequalities—A circular tour. Nonlinear Anal.5, 565–583 (1981)Google Scholar
  24. 24.
    Ha, C.W.: A non-compact minimax theorem. Pac. J. Math.97, 115–117 (1981)Google Scholar
  25. 25.
    Halpern, B.R., Bergman, G.M.: A fixed-point theorem for inward and outward maps. Trans. Am. Math. Soc.130, 353–358 (1968)Google Scholar
  26. 26.
    Horvath, C.: Points fixes et coincidences pour les applications multivoques sans convexité. C.R. Acad. Sci. Paris Sér. I. Math.296, 403–406 (1983)Google Scholar
  27. 27.
    Horvath, C.: Points fixes et coincidences sans convexité. Thèse Ph. D. Univ. de Montréal, 1983Google Scholar
  28. 28.
    Ichiishi, T.: On the Knaster-Kuratowski-Mazurkiewicz-Shapley theorem. J. Math. Anal. Appl.81, 297–299 (1981)Google Scholar
  29. 29.
    Joly, J.L., Mosco, U.: A propos de l'existence et de la régularité des solutions de certaines inéquations quasi-variationnelles. J. Functional Analysis34, 107–137 (1979)Google Scholar
  30. 30.
    Kakutani, S.: A generalization of Brouwer's fixed-point theorem. Duke Math. J.8, 457–459 (1941)Google Scholar
  31. 31.
    Knaster, B., Kuratowski, C., Mazurkiewicz, S.: Ein Beweis des Fixpunktsatzes fürn-dimensionale Simplexe. Fund. Math.14, 132–137 (1929)Google Scholar
  32. 32.
    Lassonde, M.: On the use of KKM multifunctions in fixed point theory and related topics. J. Math. Anal. Appl.97, 151–201 (1983)Google Scholar
  33. 33.
    Liu, F.C.: A note on the von Neumann-Sion minimax principle. Bull. Inst. Math. Acad. Sinica6, 517–524 (1978)Google Scholar
  34. 34.
    Ma, T.W.: On sets with convex sections. J. Math. Anal. Appl.27, 413–416 (1969)Google Scholar
  35. 35.
    Mosco, U.: Implicit variational problems and quasi variational inequalities. In: Nonlinear operators and the calculus of variations. Lecture Notes in Math. 543, pp. 83–156. (Eds. J. P. Gossez, E. J. Lami Dozo, J. Mawhin, L. Waelbroeck). Berlin, Heidelberg, New York: Springer, 1976Google Scholar
  36. 36.
    Nash, J.: Non-cooperative games. Ann. Math.54, 286–295 (1951)Google Scholar
  37. 37.
    von Neumann, J.: Zur Theorie der Gesellschaftsspiele. Math. Ann.100, 295–320 (1928)Google Scholar
  38. 38.
    Shapley, L.S.: On balanced games without side payments. In: Mathematical programming, pp. 261–290. (Eds. T. C. Hu, S. M. Robinson). New York: Academic Press, 1973Google Scholar
  39. 39.
    Sion, M.: On general minimax theorems. Pac. J. Math.8, 171–176 (1958)Google Scholar
  40. 40.
    Takahashi, W.: Nonlinear variational inequalities and fixed point theorems. J. Math. Soc. Japan28, 168–181 (1976)Google Scholar
  41. 41.
    Tarafdar, E., Thompson, H.B.: On Ky Fan's minimax principle. J. Austral. Math. Soc. Ser. A26, 220–226 (1978)Google Scholar
  42. 42.
    Tychonoff, A.: Ein Fixpunktsatz. Math. Ann.111, 767–776 (1935)Google Scholar
  43. 43.
    Yen, C.L.: A minimax inequality and its applications to variational inequalities. Pac. J. Math.97, 477–481 (1981)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Ky Fan
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations