Advertisement

Mathematische Annalen

, Volume 275, Issue 2, pp 257–267 | Cite as

Immersions minimales, première valeur propre du laplacien et volume conforme

  • A. El Soufi
  • S. Ilias
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Beardon, A.F.: The geometry of discrete groups. Graduate texts in mathematics, 91. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  2. 2.
    Berard-Bergery, Bourguignon, J.P.: Laplacian and riemannian submersions with totally geodesic fibres. Ill. J. Math.26, 181–200 (1982)Google Scholar
  3. 3.
    Berger, M.: Sur les premières valeurs propres des variétés riemanniennes. Compos. Math.26, 129–149 (1973)Google Scholar
  4. 4.
    Besse, A.L.: Manifolds all of whose geodesics are closed. Ergebnisse der Mathematik und ihrer Grenzgebiete 93. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  5. 5.
    Bourguignon, J.P.: Première valeur propre du laplacien et volume des sphères riemanniennes. Sémin. Goulaouic-Schwartz Equations Deriv. Partielles9, 1–17, 1979–1980Google Scholar
  6. 6.
    Dieudonne, J.: Eléments d'analyse, tome IX. Paris: Gauthier-Villars 1982Google Scholar
  7. 7.
    El Soufi, A., Ilias, S.: Le volume conforme et ses applications d'après Li et Yau. Publications du séminaire de théorie spectrale et géométrie. Chambéry-Greoble, exposé VII, 1–15, (1983–1984)Google Scholar
  8. 8.
    Hersch, J.: Quatre propriétés isopérimétriques de membranes sphériques homogènes. C. R. Acad. Sci. Paris270, 1645–1648 (1970)Google Scholar
  9. 9.
    Lawson, H.B.: Lectures on minimal submanifolds. Lecture series 9. Berkeley: Publish or Perish 1980Google Scholar
  10. 10.
    Li, P., Yau, S.T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math.69, 269–291 (1982)Google Scholar
  11. 11.
    Montiel, S., Ros, A.: Minimal immersions of surfaces by the first eigenfunctions and conformal area. Preprint 1985Google Scholar
  12. 12.
    Muto, H.: The first eigenvalue of the laplacian on even dimensional spheres. Tôhoku Math. J.32, 427–432 (1980)Google Scholar
  13. 13.
    Muto, H., Ohnita, Y., Urakawa, H.: Homogeneous minimal hypersurfaces in the unit sphere and the first eigenvalue of their laplacian. Tôhoku Math. J.36, 253–267 (1984)Google Scholar
  14. 14.
    Tanno, S.: The first eigenvalue of the laplacian on spheres. Tôhoku Math. J.31, 179–185 (1979)Google Scholar
  15. 15.
    Urakawa, H.: On the least positive eigenvalue of the lapacian for compact group manifold. J. Math. Soc. Japan31, 209–226 (1979)Google Scholar
  16. 16.
    Yang, P., Yau, S.T.: Eigenvalues of the laplacian of compact rieman surfaces and minimal submanifolds. Ann. Scuola Sup. Pisa7, 55–63 (1980)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • A. El Soufi
    • 1
  • S. Ilias
    • 1
  1. 1.Laboratoire de Mathématiquesassocié au CNRS nO 188St-Martin-d'HeresFrance

Personalised recommendations