Mathematische Annalen

, Volume 275, Issue 2, pp 221–255 | Cite as

Studies on the Painlevé equations

III. Second and fourth painlevé equations,PII andPIV
  • Kazuo Okamoto
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Airault, H.: Rational solutions of Painlevé equations. Studies in Appl. Math.61, 31–53 (1979)Google Scholar
  2. 2.
    Bourbaki, N.: Groupes et algèbres de Lie. Chaps. 4–6. Paris: Masson 1980Google Scholar
  3. 3.
    Bureau, F.J.: Les équations différentielles du second ordre à points critiques fixes, I. Les intégrales de l'équation A2 de Painlevé. Bull. Cl. Sci. Acad. Roy. Belg.69, 80–104 (1983); II. Les intégrales de l'équation A4 de Painlevé, ibid Bull. Cl. Sci. Acad. Roy. Belg.69 397–433 (1983)Google Scholar
  4. 4.
    Darboux, G.: Leçons sur la théorie générale des surfaces. tII. 137. Chelsea 1972Google Scholar
  5. 5.
    Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II. Physica2 D, 407–448 (1981)Google Scholar
  6. 6.
    Kametaka, Y.: On poles of the rational solution of the Toda equation of Painlevé-II type. Proc. Japan Acad. Ser. A59, 358–360 (1983)Google Scholar
  7. 7.
    Kametaka, Y.: On poles of the rational solution of the Toda equation of Painlevé-IV type. Proc. Japan Acad. Ser. A59, 453–455 (1983)Google Scholar
  8. 8.
    Lukashevich, N.A.: Theory of the fourth Painlevé equation. Diffeer. Uravn.3, 395–399 (1967)Google Scholar
  9. 9.
    Lukashevich, N.A.: The second Painlevé equation. Differ. Uravn.7, 853–854 (1971)Google Scholar
  10. 10.
    Murata, Y.: Rational solutions of the second and the fourth Painlevé equations. Funkc. Ekvacioy. Ser. Int.28, 1–32 (1985)Google Scholar
  11. 11.
    Okamoto, K.: Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé. Jap. J. Math.5, 1–79 (1979)Google Scholar
  12. 12.
    Okamoto, K.: Polynomial Hamiltonians associated with Painlevé equations, I. Proc. Japan Acad. Ser. A56, 264–268 (1980); II, ibid. Proc. Japan Acad. Ser. A56 367–371 (1980)Google Scholar
  13. 13.
    Okamoto, K.: On the τ-function of the Painlevé equations. Physica2 D, 525–535 (1981)Google Scholar
  14. 14.
    Okamoto, K.: Studies on the Painlevé equations I, sixth Painlevé equationP VI. Ann. Mat.; II, fifth Painlevé equationP v. Jap. J. Math. 1986Google Scholar
  15. 15.
    Okamoto, K.: Sur les échelles associées aux fonctions spéciales et léquation de Toda, preprint 1985Google Scholar
  16. 16.
    Vorob'ev, A.P.: On rational solutions of the second Painlevé equation. Differ. Uravn.1, 58–59 (1965)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Kazuo Okamoto
    • 1
  1. 1.Institut de Recherche Mathématique AvancéeUniversité Louis PasteurStrasbourg CedexFrance

Personalised recommendations