Advertisement

Acta diabetologia latina

, Volume 1, Issue 3, pp 283–297 | Cite as

Fattori aventi rapporto con la sintesi e la liberazione di insulina

  • James B. Field
Dalla Letteratura Straniera
  • 52 Downloads

Riassunto

La produzione giornaliera di insulina da parte delle cellule beta delle isole diLangerhans corrisponde approssimativamente a 50 U di insulina. Lo stimolo per questa produzione di insulina è costituito dal glucosio che permea nelle isole. Viene preso in considerazione il ruolo degli altri esosi e dei metaboliti del glucosio nella stimolazione dell'insulinopoiesi pancreatica. Altre sostanze hanno un effetto sulla formazione di insulina da parte delle betacellule, come le sulfoniluree e un aminoacido, la leucina.

Vengono riassunti inoltre gli aspetti istologici e ultramicroscopici che si accompagnano alla sintesi ed alla secrezione di insulina da parte delle betacellule.

Sebbene la concentrazione di glucosio che penetra entro le cellule costituisca, secondo le vedute comuni, lo stimolo principale della secrezione insulinica, certamente non sono ancora note le tappe biochimiche di tale controllo. L'assimilazione glucidica da parte di preparati di tumori insulari non è eccessivamente abbondante. Vi sono motivi fondati per ritenere che nel tessuto insulare siano contemporaneamente presenti ambedue le vie metaboliche del ricambio glucidico e cioè la via diEmbden-Meyerhof e loshunt degli esoso-monofosfati. Studi istiochimici e dosaggi diretti degli enzimi hanno già dimostrato la presenza degli enzimi che sono interessati nell'una e nell'altra di queste vie metaboliche. Studi metabolici ed enzimaticiin vitro hanno messo in evidenza la presenza, nel tessuto insulare, del ciclo degli acidi tricarbossilici. Sono stati determinati inoltre, nel tessuto delle cellule insulari, parecchi enzimi interessati nel metabolismo degli aminoacidi.

Altre ricerche, attuate sull'apparato insulare di alcuni pesci, hanno dimostrato l'incorporazione della radioattività proveniente dal glucosio negli aminoacidi di una proteina che possiede molte caratteristiche dell'insulina. Allorchè la concentrazione di glucosio nel mezzo di incubazione di isole di pesce viene progressivamente aumentata, si verifica un aumento dell'ossidazione del glucosio e della incorporazione del glucosio in una proteina estraibile con etanolo acido.

Vengono presi in considerazione infine gli effetti dei vari fattori che presumibilmente influenzano la secrezione e la liberazione di insulina sotto i vari parametri metabolici del tessuto insulare. Sebbene alcuni dei processi metabolici delle betacellule siano stati ben studiati, le attuali conoscenze non permettono di chiarire le tappe attraverso le quali i vari fattori influenzano la sintesi o la liberazione dell'insulina.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. 1).
    Goldner M. G. andClark D. E.: The insulin requirement of man after total pancreatectomy- J. Clin. Endocrinol.4 194, 1944.Google Scholar
  2. 2).
    Berson S. A., Yalow R. S., Bauman A., Rothschild M. A. andNewerly K.: Insulin-I131 metabolism in human subjects: demonstration of insulin binding globulin in the circulation of insulin-treated subjects - J. Clin. Invest.35 170, 1956.PubMedGoogle Scholar
  3. 3).
    Yalow R. S. andBerson S. A. - Immunoassay of endogenous plasma insulin in man - J. Clin. Invest.39 1157, 1960.PubMedGoogle Scholar
  4. 4).
    Field J. B.: On the nature of the metabolic defect(s) of carbohydrate metabolism - Am. J. Med.26 662, 1959.PubMedGoogle Scholar
  5. 5).
    Wrenshall G. A., Bogoch A. andRitchie R. C.: Extractable insulin of pancreas - Diabetes1 87, 1952.PubMedGoogle Scholar
  6. 6).
    Vallance-Owen J., Hurlock B. andPlease M. W.: Plasma insulin activity in diabetes mellitus - Lancet2 583, 1955.Google Scholar
  7. 7).
    Steinke J., Taylor K. W. andRenold A. E.: Insulin and insulin antagonists in the serum of untreated juvenile diabetes: studies with isolated rat diaphragm and rat adipose tissue -Lancet1 30, 1961.Google Scholar
  8. 8).
    Berson S. A. andYalow S. R.: Immunoassay of plasma insulin -Ciba Foundation Colloquia14 190, 1962.Google Scholar
  9. 9).
    Seltzer H.: Quantitative effects of glucose, sulfonylureas, salicylate, and indole-3-acetic acid on the secretion of insulin activity in pancreatic venous blood - J. Clin. Invest.41 289, 1962.PubMedGoogle Scholar
  10. 10).
    Steinke J., Camarini R., Marble A. andRenold A. E.: Preliminary report: elevated levels of serum insulinlike activity (ILA) as measured with adipose tissue in early untreated diabetes and prediabetes - Metabolism10 707, 1961.PubMedGoogle Scholar
  11. 11).
    Maclean N. andOgilvie R. F.: Quantitative estimation of the pancreatic islet tissue in diabetic subjects - Diabetes4 367, 1955.PubMedGoogle Scholar
  12. 12).
    Fajans S. S. andConn J. W.: The use of tolbutamide in the treatment of young people with mild diabetes mellitus - Diabetes11 (suppl): 123, 1962.Google Scholar
  13. 13).
    Anderson E. andLong J. A.: The effect of hyperglycemia on insulin secretion as determined with the isolated rat pancreas in a perfusion apparatus - Endocrinology40 92, 1947.Google Scholar
  14. 14).
    Metz R.: The effect of blood glucose concentration on insulin output - Diabetes9 89, 1960.Google Scholar
  15. 15).
    Grodsky G. M., Batts A. A., Bennett L. L., Vcella C., McWilliams N. B. andSmith D. F.: Effects of carbohydrates on the secretion of immunochemically measurable insulin from isolated rat pancreas - Am. J. Physiol. In press.Google Scholar
  16. 16).
    Kilo C., Long C. L. Jr.,Bailey R. M., Koch M. B. andRecant I.: Studies to determine whether glucose must be metabolized to induce insulin release - J. Clin Invest.41 1372, 1962.Google Scholar
  17. 17).
    Pozza G., Galansino G., Hoffeld M. andFoa P. P.: Stimulation of insulin output by monosaccharides and monosaccharide derivates - Am. J. Physiol.192 497, 1958.PubMedGoogle Scholar
  18. 18).
    Coore H. G., Randle P. J., Simon E., Kraicer P. F. andShelesnyak M. C.: Block of insulin secretion from the pancreas by D-mannoheptulose - Nature197 1264, 1963.PubMedGoogle Scholar
  19. 19).
    Grodsky G. M. andPeng C. T.: Extractable insulin measured by immunochemical assay: effect of tolbutamide - Proc. Soc. Exper. Biol. Med.101 100, 1959.Google Scholar
  20. 20).
    Bouman P. R. andGaarenstroom J. H.: Stimulation by carbutamide and tolbutamide of insulin release from rat pancreas in vitro - Metabolism10 1095, 1961.PubMedGoogle Scholar
  21. 21).
    Yalow R. S., Black H., Villanzon M. andBerson S. A.: Comparison of plasma insulin levels following administration of tolbutamide and glucose - Diabetes9 356, 1960.PubMedGoogle Scholar
  22. 22).
    Fajans S. S., Schneider J. M., Schteingart D. E. andConn J. W.: The diagnostic value of sodium tolbutamide in hypoglycemic states - J. Clin. Endocrinol.21 371, 1961.Google Scholar
  23. 23).
    Samols E. andMarks V.: Insulin assay in insulinomas -Brit. M. J.1 507, 1963.Google Scholar
  24. 24).
    Cochrane W., Palne W. W., Simpkiss M. J. andWoolf L. I.: Familial hypoglycemia precipitated by aminoacids - J. Clin. Invest.35 411, 1956.PubMedGoogle Scholar
  25. 25).
    Di George A., Averbach V. H. andMabry C. C.: Elevated serum insulin associated with leucine-induced hypoglycemia - Nature188 1036, 1960.PubMedGoogle Scholar
  26. 26).
    Grumbach M. M. andKaplan S. L.: Aminoacid and alpha-keto acid-induced hyperinsulinism in the leucine-sensitive type of infantile and childhood hypoglycemia - J. Pediat.57 346, 1960.PubMedGoogle Scholar
  27. 27).
    Flanagan G. C., Schwartz T. B. andRyan W. G.: Studies on patients with islet cell tumor including the phenomenon of leucine-induced accentuation of hypoglycemia - J. Clin. Endocrinol.21 401, 1961.Google Scholar
  28. 28).
    Marks J. F. andKlein R.: Effect of leucine on plasma insulin concentration in a girl with a pancreatic adenoma - J. Clin. Endocrinol. & Metab.21 1498, 1961.Google Scholar
  29. 29).
    Lucas C. andReaven G.: Chlorpropamide-induced leucine hypoglycemia - J. Clin. Invest.42 230, 1963.PubMedGoogle Scholar
  30. 30).
    R-Candela J. L. andGarcia-Fernandez M. L.: Stimulation of secretion of insulin by adenosine triphosphate - Nature197 1210, 1963.Google Scholar
  31. 31).
    ,Martin-Hernandez D. andCastilla-Cortazar T.: Stimulation of insulin secretion in vitro by adenosine triphosphate - Nature197 1304, 1963.Google Scholar
  32. 32).
    , and —: Effect of pretreatment of pancreas slices with n-ethylmaleimide on insulin secretion in vitro - Proc. Soc. Exper. Biol. Med.112 898, 1963.Google Scholar
  33. 33).
    Lazarus S. S. andVolk B.: The Pancreas in Human and Experimental Diabetes - New York, Grune & Stratton, 1962, p. 102–130.Google Scholar
  34. 34).
    Anderson E. andBates R. W.: Factors influencing secretion of insulin - Fed. Proc.18 4, 1959.PubMedGoogle Scholar
  35. 35).
    Gomori G., Friedman N. B. andCaldwell D. W.: Beta cell changes in guinea pig pancreas in relation to blood sugar level - Proc. Soc. Exper. Biol. Med.41 567, 1939.Google Scholar
  36. 36).
    Lazarus S. S. andBencosme S. A.: Alterations of pancreas during cortisone diabetes in rabbits - Proc. Soc. Exper. Biol. Med.89 114, 1955.Google Scholar
  37. 37).
    — andVolk B. W.: Pancreatic adaption to diabetogenic hormones - Arch. Path.67 456, 1959.Google Scholar
  38. 38).
    — and —: The effect of protracted glucagon administration on blood glucose and on pancreatic morphology - Endocrinology63 359, 1958.PubMedGoogle Scholar
  39. 39).
    Volk B. W., Goldner M. G., Weissenfeld S. andLazarus S. S.: Functional and histological studies concerning the action of sulfonylureas - Ann. N. Y. Acad. Sci.71 141, 1957.PubMedGoogle Scholar
  40. 40).
    Hellman B., Hellerstrom C., Larsson S. andBrolin S.: Histochemical observations on the pancreatic islets in normal and obese-hyperglycemic mice - Ztschrft. Zellforschung & Mikroscopische Anatomie55 235, 1961.Google Scholar
  41. 41).
    Christophe J., Dagenais Y. andMayer J.: Increased circulating insulin-like activity in obese hyperglycemic mice - Nature184 61, 1959.Google Scholar
  42. 42).
    See reference 33, p. 141.Google Scholar
  43. 43).
    Volk B. W. andLazarus S. S.: Effect of various diabetogenic hormones on the structure of the rabbit pancreas - Am. J. Path.34 121, 1958.PubMedGoogle Scholar
  44. 44).
    Hartroft W. S. andWrenshall G. A.: Correlation of β-cell granulation with extractable insulin of the pancreas - Diabetes4 1, 1955.PubMedGoogle Scholar
  45. 45).
    Lazarus S. S. andBarden H.: Localization of aldehyde fuchsin and adenosine triphosphate staining in pancreatic β-cells - J. Histochem. & Cytochem.9 628, 1961.Google Scholar
  46. 46).
    See reference 33, p. 51.Google Scholar
  47. 47).
    Han A. W. andHaist R. E.: Histologic studies of trophic effects of diabetogenic anterior pituitary extracts and their relation to the pathogenesis of diabetes - Am. J. Path.17 787, 1941.Google Scholar
  48. 48).
    Randle P. J.: Pituitary growth hormone and blood insulin activity - Ciba Foundation Colloquia9 35, 1956.Google Scholar
  49. 49).
    Lazarus S. S. andBencosme S. A.: Development and regression of cortisone-induced lesions in rabbit pancreas - Am. J. Clin. Path.26 1146, 1956.PubMedGoogle Scholar
  50. 50).
    Hellman B. andPeterson B.: Activity of the islet β-cell as indicated by the nuclear and nucleolar size in the American obese-hyperglycemic mice - Acta Path. et Microbiol. Scand.50 291, 1960.Google Scholar
  51. 51).
    Batts A.: Use of the Golgi apparatus as an indicator of the level of activity of the cells of the islets of Langerhans - Ann. N. Y. Acad. Sci.82 302, 1959.PubMedGoogle Scholar
  52. 52).
    Braun T., Mosinger B. andKujalova V.: A contribution on the mode of action of D860. Experientia15 190, 1959.Google Scholar
  53. 53).
    Lazarus S. S. andVolk V. W.: Ultramicroscopic and histochemical studies on pancreatic β-cells stimulated by tolbutamide - Diabetes11 (suppl.), 2, 1962.Google Scholar
  54. 54).
    Lacy P. E.: Electron microscopy of the β-cell of the pancreas - Am. J. Med.31 851, 1961.PubMedGoogle Scholar
  55. 55).
    — andWilson W. D.: Electron microscopy of the rat pancreas - Diabetes8 36, 1959.PubMedGoogle Scholar
  56. 56).
    Volk B. W. andLazarus S. S.: Ultramicroscopic studies of rabbit pancreas during cortisone treatment - Diabetes12 162, 1963.Google Scholar
  57. 57).
    — and —: Ultramicroscopy of dog islets in growth hormone diabetes - Diabetes11 426, 1962.PubMedGoogle Scholar
  58. 58).
    Bjorkman N., Hellerstrom C. andHellman B.: The ultrastructure of the islets of Langerhans in normal and obese-hyperglycemic mice - Ztschrft. Zellforschung.58 803, 1963.Google Scholar
  59. 59).
    Rennie J.: On the occurrence of a «principle islet» in the pancreas of Teleostei -J. Anat. Physiol.37 375, 1903.Google Scholar
  60. 60).
    Lazarow A., Makinen P. andCooperstein S. J.: Glucose-6-phosphatase content of toadfish islet tissue - Biol. Bull.117 418, 1959.Google Scholar
  61. 61).
    Fritz C. T., Lazarow A. andCooperstein S. J.: Studies on the isolated islet tissue of fish. III. Effect of substrates and inhibition on the oxygen uptake of pancreatic islet slices of toadfish - Biol. Bull.119 161, 1960.Google Scholar
  62. 62).
    Field J. B. andLazarow A.: Comparison of the oxidation of C-1 and C-6 labeled glucose by islet tissue - Biol. Bull.119 313, 1960.Google Scholar
  63. 63).
    Hellman B. andLarsson S.: The glucose metabolism in the islets of Langerhans. I. In vitro studies of the fate of uniformly14C-labeled glucose and fructose in cottus quadricornis L. Acta Endocrinol.38 303, 1961.PubMedGoogle Scholar
  64. 64).
    — and —: Transaminase and transferase activities in pancreatic islet tissue of the teleost cottus quadricornis-L. - Experientia18 180, 1962.PubMedGoogle Scholar
  65. 65).
    Orkand P. M.: Glucose-6-phosphatase activity in toadfish islet tissue - Am. J. Med. Tech.28 296, 1962.Google Scholar
  66. 66).
    Humbel R. E. andRenold A. E.: Studies on isolated islets of Langerhans (Brockmann bodies) of teleost fishes. I. Metabolic activity in vitro - Biochim. Biophys. Acta74 84, 1963.PubMedGoogle Scholar
  67. 67).
    —: Studies on isolated islets of Langerhans (Brockmann bodies) of teleost fishes. II. Evidence for insulin biosynthesis in vitro - Biochim Biophys. Acta74 96, 1963.PubMedGoogle Scholar
  68. 68).
    Chiquione A. D.: Further studies on the histochemistry of glucose-6-phosphatase - J. Histochem. & Cytochem.3 471, 1955.Google Scholar
  69. 69).
    Burstone M. S. andFolk J. E.: Histochemical demonstration of aminopeptidase. - J. Histochem. & Cytochem.4 217, 1956.Google Scholar
  70. 70).
    Lazarus S.: Acid and glucose-6-phosphatase activity of pancreatic β-cells after cortisone and sulfonylureas - Proc. Soc. Exper. Biol. Med.102 303, 1959.Google Scholar
  71. 71).
    — andBradshaw M.: Oxidative pathways in pancreatic β-cells. - Proc. Soc. Exper. Biol. Med.102 463, 1959.Google Scholar
  72. 72).
    Hellman B. andHellerstrom C.: Histochemical studies on glucose-6-phosphatase, adenosine triphosphatase and amylo phosphorylase in the pancreatic islets of normal and obese-hyperglycemic mice - Acta Endocrinol.39 474, 1962.PubMedGoogle Scholar
  73. 73).
    Hellerstrom C. andHellman B.: Demonstration of oxidative enzymes in the human pancreas with special reference to the islets of Langerhans - Acta Path. et Microbiol. Scand.55 385, 1962.Google Scholar
  74. 74).
    Lazarus S., Barden H. andBradshaw M.: Pancreatic β-cells and alloxan toxicity - Arch. Path.73 210, 1962.PubMedGoogle Scholar
  75. 75).
    Cohen R. B. andWolfe H. J.: Oxidative pathways in the pancreas - J. Histochem. & Cytochem -11 288, 1963.Google Scholar
  76. 76).
    Field J. B., Johnson P., Herrig B. andWeinberg A. N.: Evidence for the hexose monophosphate pathway for glucose metabolism in human pancreatic β-cells - Nature185 468, 1960.Google Scholar
  77. 77).
    -: Clinical and biochemical studies in patients with fonctioning islet cell tumors - Am. J. Med. In press.Google Scholar
  78. 78).
    Lacy P. E.: Quantitative histochemistry of the islets of Langerhans. I. Lactic, malic, glucose-6-phosphate and 6-phosphogluconic dehydrogenase activities of β-cells and acini - Diabetes11 96, 1962.PubMedGoogle Scholar
  79. 79).
    Smith C. H. andLacy P. E.: Enzymatic activity of pancreatic islets and acini in glucoseinjected and control rabbits - Lab. Invest.11 159, 1962.PubMedGoogle Scholar
  80. 80).
    Hellmann B. andHellerstrom C.: Quantitative analyses of sulfur in isolated pancreatic islets of mice - Experientia19 4, 1963.Google Scholar
  81. 81).
    Hellestrom C. andHellman B.: Quantitative studies on isolated pancreatic islets of mammals - Acta Endocrinol.42 615, 1963.Google Scholar
  82. 82).
    Kissane J. M. andBrolin S. E.: Enzymatic activity of pancreatic islets and acini in normal and tolbutamide treated rats - J. Histochem. & Cytochem.11 197, 1963.Google Scholar
  83. 83).
    Lazarow A. andCooperstein S. J.: Studies on the isolated islet tissue of fish. I. The cytochrome oxidase and succinic dehydrogenase content of normal toadfish (Opsanus Tau) -Biol. Bull.100 191, 1951.PubMedGoogle Scholar
  84. 84).
    Lazarus S. S.: Demonstration of glucose-6-phosphatase in mammalian pancreas - Proc. Soc. Exper. Biol. Med.101 819, 1959.Google Scholar
  85. 85).
    Field J. B.: Unpublished observations.Google Scholar
  86. 86).
    Maske H., Wolff H. undStrampfe B.: Über Die Verhinderung der diabetogenen Alloxanwirkung durch vorhergehende Glucosegaben - Klin. Wschr.31 79, 1953.PubMedGoogle Scholar
  87. 87).
    —: Interaction between insulin and zinc in the islets of Langerhans -Diabetes6 335, 1957.PubMedGoogle Scholar
  88. 88).
    —:R. H. Williams (Ed): In Diabetes - New York, Paul B. Hoeber. Inc., 1960, p. 48.Google Scholar

Copyright information

© Springer-Verlag 1964

Authors and Affiliations

  • James B. Field
    • 1
  1. 1.Clinical Research UnitUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations