Mathematische Annalen

, Volume 277, Issue 3, pp 529–541 | Cite as

Duality in the Étale cohomology of one-dimensional proper schemes and generalizations

  • Christopher Deninger


Proper Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artin, M., Verdier, J.-L.: Seminar on étale cohomology of number fields. Woods Hole 1964Google Scholar
  2. 2.
    Deninger, Ch.: On Artin-Verdier duality for function fields. Math. Z.188, 91–100 (1984)Google Scholar
  3. 3.
    Deninger, Ch.: An extension of Artin-Verdier duality to non-torsion sheaves. J. Reine Angew. Math.366, 18–31 (1986)Google Scholar
  4. 4.
    Grothendieck, A., Dieudonné, J.: Etude locale des schémas et des morphismes de schémas (EGA IV, 4). Inst. Hautes Etudes Sci. Publ. Math.32 (1967)Google Scholar
  5. 5.
    Grothendieck, A. et al.: Théorie des topos et cohomologie étale des schémas (SGA 4) Tome 3. Lect. Notes Math. 305, Berlin, Heidelberg, New York: Springer 1973Google Scholar
  6. 6.
    Kato, K., Saito, S.: Unramified class field theory of arithmetical surfaces. Ann. Math.118, 241–275 (1983)Google Scholar
  7. 7.
    Mazur, B.: Notes on étale cohomology of number fields. Ann. Sci. Ec. Norm. Super. IV. Ser.6, 521–556 (1973)Google Scholar
  8. 8.
    Milne, J.S.: Etale cohomology. Princeton: Princeton University Press 1980Google Scholar
  9. 9.
    Milne, J.S.: Arithmetic duality theorems. Orlando: Academic Press 1986Google Scholar
  10. 10.
    Raynaud, M.: Anneaux locaux henséliens. Lecture Notes in Mathematics 169. Berlin Heidelberg, New York: Springer 1970Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Christopher Deninger
    • 1
  1. 1.Fachbereich Mathematik, UniversitätRegensburgFederal Republic of Germany

Personalised recommendations