Mathematische Annalen

, Volume 277, Issue 3, pp 415–431 | Cite as

De Rham-Hodge theory for Riemannian foliations

  • Franz W. Kamber
  • Philippe Tondeur
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alaoui, A., Hector, G.: Decomposition de Hodge sur l'espace des feuilles d'un feuilletage riemannien. C.R. Acad. Sci. Paris298, 289–292 (1984)Google Scholar
  2. 2.
    Alaoui, A., Hector, G.: Décomposition de Hodge basique pour un feuilletage riemannien. Ann. Inst. Fourier36, 207–227 (1986)Google Scholar
  3. 3.
    Alaoui, A., Sergiescu, V., Hector, G.: La cohomologie basique d'un feuilletage riemannien est de dimension finie. Math. Z.188, 593–599 (1985)Google Scholar
  4. 4.
    Eells, J.: Elliptic operators on manifolds. Compl. Anal. Appl. (Trieste)1, 95–152 (1975)Google Scholar
  5. 5.
    Kamber, F., Ruh, E., Tondeur, Ph.: Almost transversally symmetric foliations. Proc. of the II. Intern. Symp. on Differential Geometry, Peniscola (1985). Lect. Notes Math. 1209, pp. 184–189, Berlin, Heidelberg, New York: Springer 1986Google Scholar
  6. 6.
    Kamber, F., Ruh, E., tondeur, Ph.: Comparing Riemannian foliations with transversaily symmetric foliations (to appear)Google Scholar
  7. 7.
    Kamber, F., Tondeur, Ph.: Foliated bundles and characteristic classes. Lect. Notes Math. 493, pp. 1–208. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  8. 8.
    Kamber, F., Tondeur, Ph.: Harmonic Foliations, Proc. NSF Conference on Harmonic Maps, Tulane University (1980). Lect. Notes Math. 949, pp. 87–121, Berlin, Heidelberg, New York: Springer 1982Google Scholar
  9. 9.
    Kamber, F., Tondeur, Ph.: Dualité de Poincaré pour les feuilletages harmoniques. C.R. Acad. Sci. Paris294, 357–359 (1982)Google Scholar
  10. 10.
    Kamber, F., Tondeur, Ph.: Duality for Riemannian foliations. Proc. Symp. Pure Math.40, 609–618 (1983)Google Scholar
  11. 11.
    Kamber, F., Tondeur, Ph.: Foliations and metrics. Proc of the 1981–82 year in differential geometry, University of Maryland. Progr. Math.32, 103–152 (1983)Google Scholar
  12. 12.
    Kamber, F., Tondeur, Ph.: Duality theorems for foliations. Astérisque116, 108–116 (1984)Google Scholar
  13. 13.
    Molino, P.: Feuilletages riemanniens sur les variétés compactes. C.R. Acad. Sci. Paris289, 421–423 (1982)Google Scholar
  14. 14.
    Molino, P.: Géométrie globale des feuilletages Riemanniens. Proc. K. Ned. Akad. Ser. A85, 45–76 (1982)Google Scholar
  15. 15.
    Reinhart, B.: Foliated manifolds with bundle-like metrics. Ann. Math.69, 119–132 (1959)Google Scholar
  16. 16.
    Rummler, H.: Quelques notions simples en géométrie riemannienne et leurs applications aux feuilletages compacts. Comment. Math. Helv.54, 224–239 (1979)Google Scholar
  17. 17.
    Warner, F.: Foundations of differentiable manifolds and Lie groups. Berlin, Heidelberg, New York: Springer 1983Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Franz W. Kamber
    • 1
  • Philippe Tondeur
    • 1
  1. 1.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations