Mathematische Annalen

, Volume 257, Issue 2, pp 157–170 | Cite as

Ribbon concordance of knots in the 3-sphere

  • C. McA Gordon
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumslag, G.: Groups with the same lower central sequence as a relatively free group. II. Properties. Trans. Am. Math. Soc.142, 507–538 (1969)Google Scholar
  2. 2.
    Brauner, K.: Zur Geometrie der Funktionen zweier komplexer Veränderlichen. Abh. Math. Sem. Univ. Hambrug6, 1–54 (1928)Google Scholar
  3. 3.
    Cockcroft, W.H.: On two-dimensional aspherical complexes. Proc. London Math. Soc.4, 375–384 (1954)Google Scholar
  4. 4.
    Cockcroft, W.H., Swan, R.G.: On the homotopy type of certain two-dimensional complexes. Proc. London Math. Soc.11, 193–202 (1961)Google Scholar
  5. 5.
    Crowell, R.H.: The groupG′/G″ of a knot groupG. Duke Math. J.30, 349–354 (1963)Google Scholar
  6. 6.
    Fox, R.H.: Some problems in knot theory. In: Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Inst. 1961), pp. 169–176. Englewood Cliffs: Prentice-Hall 1962Google Scholar
  7. 7.
    Gerstenhaber, M., Rothaus, O.S.: The solution of sets of equations in groups. Proc. Nat. Acad. Sci.48, 1531–1533 (1962)Google Scholar
  8. 8.
    Levine, J.: Knot cobordism groups in codimension two. Comment. Math. Helv.44, 229–244 (1969)Google Scholar
  9. 9.
    Levine, J.: Invariants of knot cobordism. Invent. Math.8, 98–110, 355 (1969jGoogle Scholar
  10. 10.
    Litherland, R.A.: Signatures of iterated torus knots. In: Topology of low-dimensional manifolds (Proc. Second Sussex Conf., 1977), pp. 71–84. Lecture Notes in Mathematics, Vol. 722. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  11. 11.
    Magnus, W., Karrass, A., Solitar, D.: Combinatorial group theory. New York: Dover 1976Google Scholar
  12. 12.
    Mal'cev, A.I.: Generalized nilpotent groups and their adjoint groups. Matt. USSR Sb.25, 347–366 (1949) (Russian), AMS Transl. (series 2)69, 1–21 (1968)Google Scholar
  13. 13.
    Matumoto, T.: On the signature invariants of a non-singular complex sesquilinear form. J. Math. Soc. Japan29, 67–71 (1977)Google Scholar
  14. 14.
    Mayland, E.J., Jr.: Two-bridge knots have residually finite groups. Proc. Second Internat. Conf. Theory of Groups, Canberra, 1973, pp. 488–493. In: Lecture Notes in Mathematics, Vol. 372. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  15. 15.
    Milnor, J.: Infinite cyclic coverings. In: Conference on the topology of manifolds, pp. 115–133. Boston: Prindle, Weber, and Schmidt 1968Google Scholar
  16. 16.
    Neuwirth, L.: Knot groups. Ann. Math. Stud.56 (1965)Google Scholar
  17. 17.
    Rourke, C.P.: Embedded handle theory, concordance, and isotopy. Topology of Manifolds (Proc. The Univ. of Georgia Inst. 1969), pp. 431–438. Chicago: Markham 1970Google Scholar
  18. 18.
    Rudolph, L.: Non-trivial positive braids have positive signature. Columbia University. 1980 (preprint)Google Scholar
  19. 19.
    Scharlemann, M.: The fundamental group of fibered knot cobordisms. Math. Ann.255, 243–251 (1977)Google Scholar
  20. 20.
    Stallings, J.: Homology and central series of groups. J. Algebra2, 170–181 (1965)Google Scholar
  21. 21.
    Strebel, R.: A note on groups with torsion-free abelianization and trivial multiplicator. Comment. Math. Helv.54, 147–158 (1979)Google Scholar
  22. 22.
    Thurston, W.P.: The geometry and topology of 3-manifolds. Lecture Notes, Princeton UniversityGoogle Scholar
  23. 23.
    Tristram, A.G.: Some cobordism invariants for links. Proc. Cambridge Philos. Soc.66, 251–264 (1969)Google Scholar
  24. 24.
    Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. Math.87, 56–88 (1968)Google Scholar
  25. 25.
    Waldhausen, F.: AlgebraicK-theory of generalized free products, Part 2. Ann. Math.108, 205–256 (1978)Google Scholar
  26. 26.
    Whitehead, J.H.C.: On adding relations to homotopy groups. Ann. Math.42, 409–428 (1941)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • C. McA Gordon
    • 1
  1. 1.Department of MathematicsUniversity of TexasAustinUSA

Personalised recommendations