Mathematische Annalen

, Volume 278, Issue 1–4, pp 593–603

On the adjunction mapping

  • Andrew John Sommese
  • A. Van de Ven
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ba]
    Badescu, L.: On ample divisors. I. Nagoya Math. J.86, 155–171 (1982).Google Scholar
  2. [Be]
    Beauville, A.: Letter continuing Reid's letter on Reider's method. D. March, 1986Google Scholar
  3. [Bi+Li]
    Biancofiore, A., Livorni, E. L.: On the genus of a hyperplane section of a geometrically ruled surface. To appear Ann. Mat. Pura Appl.Google Scholar
  4. [C]
    Castelnuovo, G.: Sulle superficie algebriche le cui sezioni piane sone curve iperelittiche. Rend. Circ. Mat. Palermo4, 73–88 (1890)Google Scholar
  5. [En]
    Enriques, F.: Sui sistemi lineari di superficie algebriche ad intersezioni variabili iperellittische. Math. Ann.46, 179–199 (1885)Google Scholar
  6. [Ei]
    Ein, L.: Surfaces with a hyperelliptic hyperplane section. Duke Math. J.50, 685–694 (1983)Google Scholar
  7. [Ha]
    Hartshorne, R.: Algebraic geometry. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  8. [Io]
    Ionescu, P.: Generalized adjunction and applications. Preprint.Google Scholar
  9. [K+O]
    Kobayashi, S., Ochiai, T.: Characterization of the complex projective space and hyperquadrics. J. Math. Kyoto Univ.13, 31–47 (1972)Google Scholar
  10. [L+P]
    Lanteri, A., Palleschi, M.: About the adjunction process for polarized algebraic surfaces. J. Reine Angew. Math.352, 15–23 (1984)Google Scholar
  11. [La+So]
    Lanteri, A., Sommese, A.J.: A vector bundle characterization ofP n.Google Scholar
  12. [Li1]
    Livorni, E.L.: Classification of algebraic nonruled surfaces with sectional genus less than or equal to six. Nagoya Math J.100, 1–9 (1985)Google Scholar
  13. [Li2]
    Livorni, E.L.: Classification of algebraic surfaces with sectional genus less than or equal to six III: Ruled surfaces with dim φK x ⊗L(X)=2. To appear in Math. Scand.Google Scholar
  14. [Ok1]
    Okonek, C.: Moduli reflexiver Garben und Flächen von kleinem Grad inP 4. Math. Z.184, 549–572 (1983)Google Scholar
  15. [Ok2]
    Okonek, C.: Über 2-condimensionale Untermannigfaltigkeiten vom Grad 7 inP 4 undP 5. Math. Z.187, 209–219 (1984)Google Scholar
  16. [Ok3]
    Okonek, C.: Flächen vom Grad 8 imP 4. Math. Z.191, 207–223 (1986)Google Scholar
  17. [Reid]
    Reid, M.: Letter on Reider's method. Dated March 5. 1986Google Scholar
  18. [Reider]
    Reider, I.: Vector bundles of rank 2 and linear systems on algebraic surfaces. Preprint.Google Scholar
  19. [S+R]
    Semple, J.G., Roth, L.: Introduction to algebraic geometry: Oxford: Clarendon Press 1949Google Scholar
  20. [S-G]
    Serrano-Garcia, F.: Surfaces having a hyperplane section with a special pencil. Ph. D. thesis Brandies, 1985Google Scholar
  21. [So1]
    Sommese, A.J.: Hyperplane sections of projective surfaces I. The adjunction mapping. Duke Math. J.46, 377–401 (1979)Google Scholar
  22. [So2]
    Sommese, A.J.: On hyperplane sections, Algebraic geometry. Proceedings, Chicago Circle Conference, 1980 Lect. Notes Math.862, 323–271. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  23. [So3]
    Sommese, A.J.: On the minimality of hyperplane sections of projective threefolds. J. Reine Angew. Math.329, 16–41 (1981)Google Scholar
  24. [So4]
    Sommese, A. On the adjunction theoretic structure of projective varieties Proc. Complex Analysis and Algebraic Geometry Conference. Grauert, H. (ed.) 1985. Lect Notes Math.1194. Berlin, Heidelberg, New York: Springer 1986Google Scholar
  25. [VdV]
    Van de Ven A. On the 2-connectedness of very ample divisors on a surface. Duke Math. J.46, 403–407 (1979)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Andrew John Sommese
    • 1
  • A. Van de Ven
    • 2
  1. 1.Department of MathematicsUniversity of Notre DameNotre DameUSA
  2. 2.Mathematisch InstituutLeidenThe Netherlands

Personalised recommendations