Mathematische Annalen

, Volume 278, Issue 1–4, pp 497–562 | Cite as

Heegner points and derivatives ofL-series. II

  • B. Gross
  • W. Kohnen
  • D. Zagier
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, N., Stegun, I.: Handbook of mathematical functions. New York: Dover 1965Google Scholar
  2. 2.
    Cohen, H.: A lifting of modular forms in one variable to Hilbert modular forms in two variables. In: Modular functions of one variable. VI. Serre, J.-P., Zagier, D. (eds.), 175–196. Lect. Notes. Math. 627. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  3. 3.
    Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper: Abh. Math. Sem. Univ. Hamb.14, 197–272 (1941)Google Scholar
  4. 4.
    Eichler, M., Zagier, D.: The theory of Jacobi forms. Prog. Math. 55. Basel, Boston, Stuttgart: Birkhäuser 1985Google Scholar
  5. 5.
    Gross, B.: Heegner points onX o (N). In: Modular forms. Rankin, R.A. (ed.), 87–106. Chichester: Ellis Horwood 1984Google Scholar
  6. 6.
    Gross, B.: Local heights on curves. In: Arithmetic geometry. Cornell, G., Silverman, J. (eds.), 327–339. Berlin, Heidelberg, New York: Springer 1986Google Scholar
  7. 7.
    Gross, B.: On canonical and quasi-canonical liftings. Invent. Math.84, 321–326 (1986)Google Scholar
  8. 8.
    Gross, B., Zagier, D.: On singular moduli. J. Reine Angew. Math.355, 191–220 (1985)Google Scholar
  9. 9.
    Gross, B., Zagier, D.: Heegner points and derivatives ofL-series. Invent. Math.84, 225–320 (1986)Google Scholar
  10. 10.
    Hirzebruch, F., Zagier, D.: Intersection numbers of curves of Hilbert modular surfaces and modular forms of Nebentypus. Invent. Math.36, 57–113 (1976)Google Scholar
  11. 11.
    Katz, N., Mazur, B.: Arithmetic moduli of elliptic curves. Ann. Math. Stud.108, Princeton. Princeton University Press 1985Google Scholar
  12. 12.
    Kohnen, W.: Fourier coefficients of modular forms of half-integral weight. Math. Ann.271, 237–268 (1985)Google Scholar
  13. 13.
    Kohnen, W., Zagier, D.: Modular forms with rational periods. In: Modular forms. Rankin, R.A. (ed.), 197–249. Chichester: Ellis Horwood 1984Google Scholar
  14. 14.
    Shintani T.: On construction of holomorphic cusp forms of half-integral weight. J. Math. Soc. Japan33, 649–672 (1981)Google Scholar
  15. 15.
    Skoruppa, N., Zagier, D.: Jacobi forms and a certain space of modular forms. PreprintGoogle Scholar
  16. 16.
    Sturm, J.: Projections ofC automorphic forms. Bull. Am. Math. Soc.2, 435–439 (1980)Google Scholar
  17. 17.
    Vignéras, M.-F.: Arithmétique des algèbres de quaternions. Lect. Notes 800. Berlin, Heidelberg, New York: Springer 1980Google Scholar
  18. 18.
    Waldspurger, J.-L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl60, 375–484 (1981)Google Scholar
  19. 19.
    Waldspurger, J.-L.: Sur les valeurs des certaines fonctionsL automorphes en leur centre de symétrie. Compos. Math.54, 173–242 (1985)Google Scholar
  20. 20.
    Zagier, D.: Modular forms associated to real quadratic fields. Invent. Math.30, 1–46 (1975)Google Scholar
  21. 21.
    Zagier, D.: Modular functions whose Fourier coefficients involve zeta-functions of quadratic fields. In: Modular functions of one variable. VI. Serre, J.P., Zagier, D. (eds.), 105–169. Lect. Notes 627. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  22. 22.
    Zagier, D.: Eisenstein series and the Riemann zeta function. In: Automorphic forms. representation theory and arithmetic., 275–301 Berlin, Heidelberg, New York: Springer 1981Google Scholar
  23. 23.
    Zagier, D.: Modular points modular curves, modular surfaces, and modular forms. In: Arbeitstagung Bonn 1984. Hirzebruch, F., Schwermer, J., Suter., S. (eds.), 225–248 Lect. Notes Math. 1111. Berlin, Heidelberg, New York: Springer 1985Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • B. Gross
    • 1
  • W. Kohnen
    • 2
    • 3
  • D. Zagier
    • 3
    • 4
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA
  2. 2.Mathematisches InstitutUniversität MünsterMünsterFederal Republic of Germany
  3. 3.Max-Planck-Institut für MathematikBonnFederal Republic of Germany
  4. 4.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations