Advertisement

Mathematische Annalen

, Volume 278, Issue 1–4, pp 497–562 | Cite as

Heegner points and derivatives ofL-series. II

  • B. Gross
  • W. Kohnen
  • D. Zagier
Article

Keywords

Heegner Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, N., Stegun, I.: Handbook of mathematical functions. New York: Dover 1965Google Scholar
  2. 2.
    Cohen, H.: A lifting of modular forms in one variable to Hilbert modular forms in two variables. In: Modular functions of one variable. VI. Serre, J.-P., Zagier, D. (eds.), 175–196. Lect. Notes. Math. 627. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  3. 3.
    Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper: Abh. Math. Sem. Univ. Hamb.14, 197–272 (1941)Google Scholar
  4. 4.
    Eichler, M., Zagier, D.: The theory of Jacobi forms. Prog. Math. 55. Basel, Boston, Stuttgart: Birkhäuser 1985Google Scholar
  5. 5.
    Gross, B.: Heegner points onX o (N). In: Modular forms. Rankin, R.A. (ed.), 87–106. Chichester: Ellis Horwood 1984Google Scholar
  6. 6.
    Gross, B.: Local heights on curves. In: Arithmetic geometry. Cornell, G., Silverman, J. (eds.), 327–339. Berlin, Heidelberg, New York: Springer 1986Google Scholar
  7. 7.
    Gross, B.: On canonical and quasi-canonical liftings. Invent. Math.84, 321–326 (1986)Google Scholar
  8. 8.
    Gross, B., Zagier, D.: On singular moduli. J. Reine Angew. Math.355, 191–220 (1985)Google Scholar
  9. 9.
    Gross, B., Zagier, D.: Heegner points and derivatives ofL-series. Invent. Math.84, 225–320 (1986)Google Scholar
  10. 10.
    Hirzebruch, F., Zagier, D.: Intersection numbers of curves of Hilbert modular surfaces and modular forms of Nebentypus. Invent. Math.36, 57–113 (1976)Google Scholar
  11. 11.
    Katz, N., Mazur, B.: Arithmetic moduli of elliptic curves. Ann. Math. Stud.108, Princeton. Princeton University Press 1985Google Scholar
  12. 12.
    Kohnen, W.: Fourier coefficients of modular forms of half-integral weight. Math. Ann.271, 237–268 (1985)Google Scholar
  13. 13.
    Kohnen, W., Zagier, D.: Modular forms with rational periods. In: Modular forms. Rankin, R.A. (ed.), 197–249. Chichester: Ellis Horwood 1984Google Scholar
  14. 14.
    Shintani T.: On construction of holomorphic cusp forms of half-integral weight. J. Math. Soc. Japan33, 649–672 (1981)Google Scholar
  15. 15.
    Skoruppa, N., Zagier, D.: Jacobi forms and a certain space of modular forms. PreprintGoogle Scholar
  16. 16.
    Sturm, J.: Projections ofC automorphic forms. Bull. Am. Math. Soc.2, 435–439 (1980)Google Scholar
  17. 17.
    Vignéras, M.-F.: Arithmétique des algèbres de quaternions. Lect. Notes 800. Berlin, Heidelberg, New York: Springer 1980Google Scholar
  18. 18.
    Waldspurger, J.-L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl60, 375–484 (1981)Google Scholar
  19. 19.
    Waldspurger, J.-L.: Sur les valeurs des certaines fonctionsL automorphes en leur centre de symétrie. Compos. Math.54, 173–242 (1985)Google Scholar
  20. 20.
    Zagier, D.: Modular forms associated to real quadratic fields. Invent. Math.30, 1–46 (1975)Google Scholar
  21. 21.
    Zagier, D.: Modular functions whose Fourier coefficients involve zeta-functions of quadratic fields. In: Modular functions of one variable. VI. Serre, J.P., Zagier, D. (eds.), 105–169. Lect. Notes 627. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  22. 22.
    Zagier, D.: Eisenstein series and the Riemann zeta function. In: Automorphic forms. representation theory and arithmetic., 275–301 Berlin, Heidelberg, New York: Springer 1981Google Scholar
  23. 23.
    Zagier, D.: Modular points modular curves, modular surfaces, and modular forms. In: Arbeitstagung Bonn 1984. Hirzebruch, F., Schwermer, J., Suter., S. (eds.), 225–248 Lect. Notes Math. 1111. Berlin, Heidelberg, New York: Springer 1985Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • B. Gross
    • 1
  • W. Kohnen
    • 2
    • 3
  • D. Zagier
    • 3
    • 4
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA
  2. 2.Mathematisches InstitutUniversität MünsterMünsterFederal Republic of Germany
  3. 3.Max-Planck-Institut für MathematikBonnFederal Republic of Germany
  4. 4.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations