Mathematische Annalen

, Volume 278, Issue 1–4, pp 335–380 | Cite as

The logarithm of the dedekind η-function

  • Michael Atiyah
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.F.: The signature of fibre-bundles. Global Analysis, 73–84. Tokyo, Princeton: University Press 1969Google Scholar
  2. 2.
    Atiyah, M.F., Bott, R.: A Lefschetz fixed point formula for elliptic complexes. II. Ann. Math.88, 451–491 (1968)Google Scholar
  3. 3.
    Atiyah, M.F., Singer, I.M.: The index of elliptic operators. I, III. Ann. Math.87, 484–530, 546–604 (1968)Google Scholar
  4. 4.
    Atiyah, M.F., Singer, I.M.: The index of elliptic operators. IV. Ann. Math.93, 119–138 (1971)Google Scholar
  5. 5.
    Atiyah, M.F., Donnelly, H., Singer, I.M.: Eta invariants, signature defects of cusps and values of L-functions. Ann. Math.118, 131–177 (1983)Google Scholar
  6. 6.
    Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. I. Math. Proc. Camb. Phil. Soc.77, 43–69 (1975)Google Scholar
  7. 7.
    Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. II. Math. Proc. Camb. Phil. Soc.78, 405–432 (1975)Google Scholar
  8. 8.
    Bismut, J.M.: The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs. Invent. Math.83, 91–151 (1986)Google Scholar
  9. 9.
    Bismut, J.M., Freed, D.S.: The analysis of elliptic families, I. Metrics and connections on determinant bundles. Commun. Math. Phys.106, 159–176 (1986)Google Scholar
  10. 10.
    Bismut, J.M., Freed, D.S.: The analysis of elliptic families. II. Commun. Math. Phys.107, 103–163 (1986)Google Scholar
  11. 11.
    Chern, S.S., Hirzebruch, F., Serre, J.-P.: The index of a fibered manifold. Proc. Am. Math. Soc.8, 587–596 (1957)Google Scholar
  12. 12.
    Dedekind, R.: Erläuterungen zu zwei Fragmenten von Riemann. Riemann's gesammelte Mathematische Werke 2, 466–478. New York: Dover 1982Google Scholar
  13. 13.
    Deligne, P.: Equations différentielles à points singulier réguliers. Lect. Notes Math. 163. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  14. 14.
    Donnelly, H., Patodi, V.K.: Spectrum and the fixed point sets of isometries II. Topology16, 1–12 (1977)Google Scholar
  15. 15.
    Freed, D.S. (to appear)Google Scholar
  16. 15a.
    Donaldson, S.K.: Infinite determinants, stable bundles and curvatur. Duke. Math. J.54, 231–247 (1987)Google Scholar
  17. 16.
    Hirzebruch, F.: Hilbert modular surfaces. Enseign. Math.19, 183–281 (1973)Google Scholar
  18. 17.
    Hirzebruch, F.: The signature theorem: reminiscences and recreation. Prospects in Mathematics. Ann. Math. Stud.70, pp. 3–31. Princeton, University Press 1971Google Scholar
  19. 18.
    Hochschild, G.: Group extensions of Lie groups. II. Ann. Math.54, 537–551 (1951)Google Scholar
  20. 19.
    Kodaira, K.: A certain type of irregular algebraic surfaces. J. Analyse Math.19, 207–215 (1967)Google Scholar
  21. 20.
    Kodaira, K.: On compact analytic surfaces. Analytic Functions, 121–136 Princeton: Univ. Press (1960)Google Scholar
  22. 21.
    Lusztig, G.: Novikov's higher signature theorem and families of elliptic operators. J. Differ. Geometry7, 229–256 (1972)Google Scholar
  23. 22.
    Mackey, G.W.: Les ensembles Borélien et les extensions des groupes. J. Math. Pures. Appl.36, 171–178 (1957)Google Scholar
  24. 23.
    Meyer, C.: Über die Bildung von Klasseninvarianten. Abh. Math. Sem. Univ. Hamburg27, 206–230 (1964)Google Scholar
  25. 24.
    Meyer, C.: Die Berechnung der Klassenzahl abelscher Körper über quadratischen Zahlenkörpern. Berlin 1957Google Scholar
  26. 25.
    Meyer, W.: Die Signatur von Flächenbündeln. Math. Ann.201, 239–264 (1973)Google Scholar
  27. 26.
    Meyer, W., Sczech, R.: Über eine topologische und Zahlentheoretische Anwendung von Hirzebruchs Spitzenauflösung. Math. Ann.240, 69–96 (1979)Google Scholar
  28. 27.
    Müller, W.: Signature defects of cusps of Hilbert modular varieties and values of L-functions at s=1. Akademie der Wissenschaften der DDR, preprint 1983Google Scholar
  29. 28.
    Mumford, D.: Abelian quotients of the Teichmüller modular group. J. d'Analyse Math.18, 227–244 (1967)Google Scholar
  30. 29.
    Quillen, D.: Determinants of Cauchy-Riemann operators over a Riemann surface. Funct. Anal. Appl.19, 31–34 (1985)Google Scholar
  31. 30.
    Quillen, D.: Superconnections and the Chern character. Topology24, 89–95 (1985)Google Scholar
  32. 31.
    Rademacher, K.: Zur Theorie der Dedekindschen Summen. Math. Zeit63, 445–463 (1956)Google Scholar
  33. 32.
    Ray, D.B., Singer, I.M.: R-torsion and the Laplacian on Riemannian manifolds. Adv. Math.7, 145–210 (1971)Google Scholar
  34. 33.
    Ray, D.B., Singer, I.M.: Analytic torsion for complex manifolds. Ann. Math.98, 154–177 (1973)Google Scholar
  35. 34.
    Siegel, C.L.: Advanced Analytic Number Theory. Tata Institute of Fundamental Research, Bombay 1980Google Scholar
  36. 35.
    Witten, E.: Global gravitational anomalies. Commun. Math. Phys.100, 197–229 (1985)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Michael Atiyah
    • 1
  1. 1.Mathematical InstituteOxfordUK

Personalised recommendations