Mathematische Annalen

, Volume 278, Issue 1–4, pp 133–149

Hodge-tate structures and modular forms

  • Gerd Faltings
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BK]
    Bloch, S., Kato, K.: P-adic etale cohomology. Preprint 1984Google Scholar
  2. [D]
    Deligne, P.: Formes modulaires et représentations l-adiques. Seminaire Bourbaki355 (1969)Google Scholar
  3. [DR]
    Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. Lect. Notes Math. 349, 143–316. Berlin, Heidelberg, New York, Springer 1973Google Scholar
  4. [F]
    Fontaine, J.-M.: Formes différentielles et modules de Tate des variétés abeliennes sur les corps locaux. Invent. Math.65, 379–409 (1982)Google Scholar
  5. [MM]
    Mazur, B., Messing, W.: Universal extensions and one dimensional cohomology. Lect. Notes Math. 370, Berlin, Heidelberg, New York: Springer 1974Google Scholar
  6. [R]
    Ribet, A.: On l-adic representations attached to modular forms. II. Preprint 1984Google Scholar
  7. [S]
    Serre, J-P.: Abelian L-adic representations and elliptic curves. New York: Benjamin 1968Google Scholar
  8. [T]
    Tate, J.T.: P-Divisible groups. Conference on Local Fields, Driebergen, Berlin, Heidelberg, New York: Springer 1967Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Gerd Faltings
    • 1
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations