Mathematische Annalen

, Volume 277, Issue 4, pp 617–628 | Cite as

Factorization of holomorphic mappings in infinite dimensions

  • Richard M. Aron
  • Luiza A. Moraes
  • Raymond A. Ryan
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alencar, R., Aron, R.M., Dineen, S.: A reflexive space of holomorphic functions in infinitely many variables. Proc. Am. Math. Soc.90, 407–411 (1984)Google Scholar
  2. 2.
    Aron, R.M.: Holomorphic functions on balanced subsets of a Banach space. Bull. Am. Math. Soc.78, 624–627 (1972)Google Scholar
  3. 3.
    Aron, R.M.: Weakly uniformly continuous and weakly sequentially continuous entire functions. Advances in holomorphy. Barroso, J.A. (ed.) Math. Studies. 34, 47–66, Amsterdam: North-Holland 1979Google Scholar
  4. 4.
    Aron, R.M., Hervés, C.: Weakly sequentially continuous functions on a Banach space. Functional analysis, holomorphy and approximation theory II 23–38. Zapata, G.I. (ed.). Amsterdam: North-Holland 1984Google Scholar
  5. 5.
    Aron, R.M., Hervés, C., Valdivia, M.: Weakly continuous mappings on Banach spaces. J. Funct. Anal.52, 189–204 (1983)Google Scholar
  6. 6.
    Aron, R.M., Schottenloher, M.: Compact holomorphic mappings on Banach spaces and the approximation property. J. Funct. Anal.21, 7–30 (1976)Google Scholar
  7. 7.
    Barroso, J.A., Nachbin, L.: Some topological properties of spaces of holomorphic mappings in infinitely many variables. Advances in holomorphy. 67–91. Barroso, J.A. (ed.). Math. Studies 34. Amsterdam: North-Holland 1979Google Scholar
  8. 8.
    Chae, S.B.: Holomorphy and calculus in normed spaces. Monographs and Textbooks in Pure and Applied. Math. 92. New York, Basel: Dekker 1985Google Scholar
  9. 9.
    Diestel, J.: Sequences and Series in Banach Spaces. Graduate Texts in Mathematics 92. Berlin, Heidelberg, New York: Springer 1984Google Scholar
  10. 10.
    Dineen, S.: Holomorphic functions on (c 0,X b)-modules. Math. Ann.196, 106–116 (1972)Google Scholar
  11. 11.
    Dineen, S.: Holomorphic functions on locally convex topological vector spaces: I locally convex topologies onH(U). Ann. Inst. Fourier23, 19–54 (1973)Google Scholar
  12. 12.
    Dineen, S.: Complex analysis in locally convex spaces. Math. Studies 57. Amsterdam: North-Holland 1981Google Scholar
  13. 13.
    Dineen, S.: Entire functions onc 0. J. Funct. Anal.52, 205–218 (1983)Google Scholar
  14. 14.
    James, R.C.: Weakly compact sets. Trans. Am. Math. Soc.113, 129–140 (1964)Google Scholar
  15. 15.
    Moraes, L.A.: Quotients of spaces of holomorphic functions on Banach spaces. Preprint (1986)Google Scholar
  16. 16.
    Tsirelson, B.S.: Not every Banach space contains an imbedding ofl p orc 0. Funct. Anal. Appl.8, 138–141 (1974)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Richard M. Aron
    • 1
  • Luiza A. Moraes
    • 2
  • Raymond A. Ryan
    • 3
  1. 1.Kent State UniversityKentUSA
  2. 2.Universidade Federal do Rio de JaneiroBrazil
  3. 3.University College GalwayGalwayIreland

Personalised recommendations