This is a preview of subscription content, log in to check access.
References
- 1.
Atkin, A.O.L., Li, W.-C.: Twists of newforms and pseudo-eigenvalues ofW-operators. Invent. Math.48, 221–243 (1978)
- 2.
Casselman, W.: On representations of GL2 and the arithmetic of modular curves. In: Lecture Notes in Mathematics No. 349, pp. 107–141. Berlin, Heidelberg, New York: Springer 1973
- 3.
Doi, K., Yamauchi, M.: On the Hecke operators for Γ0(N) and class fields over quadratic number fields. J. Math. Soc. Japan25, 629–643 (1973)
- 4.
Gelbart, S.: Automorphic forms on Adele groups. Princeton: Princeton University Press 1975
- 5.
Koike, M.: On certain Abelian varieties obtained from new forms of weight 2 on Γ0(34) and Γ0(35). Nagoya Math. J.62, 29–39 (1976)
- 6.
Li, W.-C.: Newforms and functional equations. Math. Ann.212, 285–315 (1975)
- 7.
Mazur, B.: Rational isogenies of prime degree. Invent. Math.44, 129–162 (1978)
- 8.
Miyake, T.: On automorphic forms on GL2 and Hecke operators. Ann. of Math.94, 174–189 (1971)
- 9.
Reiner, I.: Maximal orders. New York: Academic Press 1975
- 10.
Ribet, K.: Endomorphisms of semi-stable Abelian varieties over number fields. Ann. of Math.101, 555–562 (1975)
- 11.
Ribet, K.: Galois action on division points of Abelian varieties with many real multiplications. Am. J. Math.98, 751–804 (1976)
- 12.
Ribet, K.: Galois representations attached to eigenforms with nebentypus. Lecture Notes in Mathematics. No. 601, pp. 17–52, Berlin, Heidelberg, New York: Springer 1977
- 13.
Serre, J.-P.: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Invent. Math.15, 259–331 (1972)
- 14.
Shimura, G.: On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields. Nagoya Math. J.43, 199–208 (1971)
- 15.
Shimura, G.: Class fields over real quadratic fields and Hecke operators. Ann. of Math.95, 130–190 (1972)
- 16.
Shimura, G.: On the factors of the Jacobian variety of a modular function field. J. Math. Soc. Japan25, 523–544 (1973)
- 17.
Shimura, G.: The special values of the zeta functions associated with cusp forms. Comm. Pure Appl. Math.29, 783–804 (1976)
- 18.
Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Princeton: Princeton University Press 1971
- 19.
Tate, J.: Algebraic cycles and poles of zeta functions. In: Arithmetical algebraic geometry. New York: Harper and Row 1966
- 20.
Tunnell, J.: Cycles on the product of two Shimura curves and poles of zeta-functions (to appear)
Author information
Affiliations
Additional information
Partially supported by the National Science Foundation under grant MCS 77-03719, and by École Polytechnique (1979–1980)
Rights and permissions
About this article
Cite this article
Ribet, K.A. Twists of modular forms and endomorphisms of Abelian varieties. Math. Ann. 253, 43–62 (1980) doi:10.1007/BF01457819
- Received
- Revised
- Issue Date
- DOI
Keywords
- Modular Form
- Abelian Variety